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Abstract

Neural implicit scene representations, such as neural radiance fields, have shown to be powerful tools in the
field of 3D reconstruction and novel view synthesis. Such representations have the benefit of being fully
continuous and to have some degree of extrapolative power. In particular, recent work has shown that such a
representation can be used as the sole representation of online SLAM systems. Building on one such work,
NICE-SLAM, we augment the reconstruction and SLAM pipelines by learning sensor uncertainty in an
online fashion and without supervision from ground truth meshes or depth maps. We show that scaling the
objective function by the true error achieves improvements across tracking, reconstruction, and rendering
on a synthetic dataset under two different noise model assumptions. We show that a learned uncertainty
can improve performance using just 2D feature maps constructed from the depth maps inputs, as well as an
approach that leverages the volume rendering and accumulation of uncertainty in a 3D grid of features. We
then extend this work to perform two-sensor fusion and show further improvements to depth rendering. This
cursory exploration is able to approach or exceed the performance of its constituent single sensor results.
This work furthers our understanding of neural implicit representations and how to leverage online learned
uncertainty in fusing multiple sensor sources.
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Chapter 1

Introduction

Robots in the real world are often deployed in unexplored environments in which they must map—i.e.
identify their surroundings—and localize—i.e. determine their location relative to their surroundings. This
field of work is described under Simultaneous Localization and Mapping (SLAM). SLAM has been an area
of active research within the last 40 years, with focus areas involving exploration into improving accuracy,
developing strategies to recover from localization failures, and exploring new scene representations. Over
the last decade, the advances in parallel processing and deep learning have dramatically changed how many
of the state-of-the-art computer vision tasks are approached. Within 3D vision and SLAM tasks, however,
deep learning has mainly been applied to sub-tasks, and is still mostly inferior to classical SLAM pipelines.

One approach for performing SLAM is through the dense-SLAM framework. In this framework, the
scene is densely recorded, as opposed to only recording a set of sparse feature-based points. Retrieving
such scene reconstructions is thus enabled by dense-SLAM frameworks, generally at the cost of increased
memory usage to store scene details—e.g. storing occupancy or signed distance functions (SDF) in a voxel
grid. In particular, the rise of RGBD sensors has accelerated the development of dense-SLAM methods.

The Microsoft Kinect sensor, shown in Figure 1.1, was first released in 2010 and presented the first
widely available RGB-D camera for commercial and research applications. This sensor uses structured-light
(SL) to generate dense depth maps. Since then, SL methods have become prevalent. However, newer sensors
tend to utilize time-of-flight (ToF) technology—e.g. Azure Kinect v2—to achieve greater robustness. In
recent years, commercial devices like mobile phones are increasingly equipped with multiple image sensors
and even built-in depth sensors.

Figure 1.1: A Microsoft Kinect and Intel RealSense D455 RGBD sensor.

As more and more sensing modalities are developed and becoming integrated into robotics systems, and
the advent of faster compute and parallelization improves their practicality, SLAM systems are naturally
evolving to exploit these advances. In particular, the rise of integrated sensors in common consumer prod-
ucts provide plentiful, but often noisy, data that can be improved via uncertainty estimation. Constructing
scenes using neural implicit methods has become of interest due to its ability to generate impressive 3D
reconstruction, while ensuring continuous watertight representations. This work looks to build and improve

1
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Figure 1.2: (Top) GT depth map and GT errors. (Bottom) Learned depth map and uncertainty.

upon a neural implicit SLAM pipeline, NICE-SLAM [46], using implicit methods for learning uncertainty.
In this work, we aim to learn sensor-agnostic uncertainty, shown in Figure 1.2, in an online fashion without
supervision from ground-truth meshes or depth maps. Such information can improve reconstruction and
rendering, while also elegantly enabling multi-sensor systems.

1.1 Focus of this Work

NICE-SLAM provides a foundational work in investigating neural-implicit scene representations for dense-
SLAM systems. It has shown impressive results in scene reconstruction and closes some of the performance
gaps compared to classical methods. NICE-SLAM addresses issues with catastrophic forgetting by ensuring
local feature updates in the implicit representation and preserving scene geometry from previously viewed
regions. This approach, however, has some deficiencies and areas for extension that we aim to address in
this work.

NICE-SLAM is dependent on accurate depth ranging for its inputs. We find in this work that the presence
of measurement noise has a significant impact on the quality of reconstruction, rendering, and tracking. As
all sensors and ranging methods exhibit sensor- or method-dependent noise, this dependency presents a
serious challenge in transitioning NICE-SLAM from a synthetic environment to a real-world environment.
Leveraging the true error for scaling can further inform 3D reconstruction and approach the performance
when using noise-free depth maps.

In practice, ground truth errors are unavailable and we must learn uncertainty implicitly in the training
process or operation of such a system. In this work, we aim to learn uncertainty in an online fashion jointly
with the scene representation and regardless of the sensor-specific noise distribution. This task is performed
without supervision or access to the ground truth information. Such an approach in learning uncertainty has
the potential to further close the gap between neural implicit methods and classical methods. Additionally,
this work is a key component in unlocking the NICE-SLAM framework for multi-sensor and multi-agent
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CHAPTER 1. INTRODUCTION

settings.
This work thus extends the NICE-SLAM framework using implicitly learned uncertainty to guide the

single-sensor scene reconstruction, rendering, and tracking. We provide a theoretical foundation for how
each sampled ray can be constructed into a probabilistic loss function based on previous works in leveraging
uncertainty in computer vision. We showcase results on how our method generally improves on standard
performance metrics using a combination of synthetic and real world datasets. Following the single-sensor
evaluation, this work explores the fusion of depth maps generated by two aligned and synchronized sensors
to achieve performance gains in mesh accuracy and depth rendering. Finally, we discuss the implications of
our work and the next steps to incorporate different sensors and to handle multiple agent environments.

1.2 Thesis Organization

This thesis is organized into six chapters that introduce our uncertainty extension to NICE-SLAM, an ap-
proach to implicitly learning uncertainty in an online fashion regardless of sensor-specific noise distribu-
tions. In Chapter 2, we provide a brief introduction to visual SLAM and dense SLAM. The chapter goes
on to discuss the recent trends in deep learning for 3D scene reconstruction and novel view synthesis using
neural implicit methods, before exploring their applications in SLAM systems. We end the chapter with a
discussion of uncertainty in deep learning. Chapter 3 goes on to discuss the theoretical motivations in con-
structing our loss functions and the mechanics of neural implicit scene rendering. This section also covers
our evaluation criteria and the use of statistical analysis in evaluation. Following the theoretical motivation
and approach, Chapter 4 presents experiments that showcase the potential for improvements in reconstruc-
tion and rendering using error-scaling. The chapter goes on to show the results of our different proposed
architectures and provides a larger ablation on different datasets before exploring the multi-sensor setting.
Chapter 5 presents our key takeaways from our experiments, and provides arguments for the assumptions
made in our theoretical framework. Additionally, we provide some context to the challenges of learning un-
certainty in an online fashion from a single sensor and present promising avenues for future work. Finally,
we present our closing remarks in Chapter 6.
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Chapter 2

Related Work

Visual odometry (VO) and SLAM have been an ongoing research subjects in robotics across the last four
decades. The main difference between visual odometry and SLAM lies in their objective and constraints.
Visual odometry is solely interested in ego-motion estimation which is equivalent to the localization in
SLAM frameworks. As such, visual odometry tends to have limited memory using only information from
the the past few seconds to perform motion estimation. SLAM, in contrast, aims to build a coherent map
that it can localize itself within, achieving both goals simultaneously.

2.1 Visual SLAM

The first SLAM approaches formulate the problem as an Extended Kalman Filter (EKF) [38] that tracks
feature points across sequences of images. Feature points detectors have evolved throughout the years
with some key developments including Shi-Tomasi feature points [37], scale-invariant feature transform
(SIFT) features [21], speeded up robust features (SURF) [5], and oriented FAST and rotated BRIEF (ORB)
features [33, 7, 34].

To improve the efficiency of SLAM pipelines, the use of selected keyframes—that is to discard strongly
overlapped intermediary frames—is a popular choice as it allows for more efficient bundle adjustment
(BA) optimization. BA is a common approach for optimizing image-based reprojection error that is widely
adopted across SLAM frameworks.

Another distinguishing factor in SLAM pipelines involves their optimization paradigms. SLAM meth-
ods can be divided between direct methods, which minimize photometric error of pixel intensities, or indirect
methods, which calculate or detect features that are used to minimize spatial errors. Dense-SLAM methods
generally rely on direct methods as they attempt to build dense maps using pixel-wise colour and depth.

For classical indirect SLAM methods, the current state-of-the-art ORB3-SLAM [8] builds off of previ-
ous ORB-SLAM [25, 26] frameworks. This method utilizes ORB features and extends the robustness with
multi-map construction and re-association in the event of tracking failure.

2.2 Dense-SLAM

The foundations for dense online 3D scene reconstruction was developed by Curless and Levoy [11]. In
2012, Newcombe et al. build on top of this framework with KinectFusion [27], the first modern dense-
SLAM pipeline using RGBD cameras. Their approach uses a globally fused volumetric model represented
by a truncated signed distance function (TSDF). A more recent work by Cao et al. investigated real-time
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high accuracy 3D reconstruction [9] which leverages uncertainty formulations in both spatial and depth
mapping to improve global model consistency and reconstruction accuracy.

∇SLAM [18] takes classical dense-SLAM framework and re-implements many mechanisms as an end-
to-end differentiable pipeline. This method takes advantage of parallel GPU processing and gradient opti-
mization methods developed for deep learning, but does not employ learnable parameters.

2.3 Neural Implicit Representations

2.3.1 Neural Radiance Fields

In 2020, Mildenhall et al. presented NeRF [24], a deep approach for novel view synthesis using a sim-
ple multi-layered perceptron (MLP) to implicitly represent spatial volume density. A scene could then
be reconstructed using volume rendering techniques [23] from arbitrary viewpoints. Since then, the sim-
plicity of NeRF has inspired significant research activity with extensions and applications in new direc-
tions [13, 14, 15].

Oechsle et al. propose UNISURF [28], a 3D reconstruction framework capable of both surface and
volume reconstruction by formulating implicit surface models and radiance fields in a unified way, enabling
the extraction of surface and volume rendering using the same model. A key contribution involves the
use of direct occupancy over volume density as a better constrained implicit model where the surface is
represented by all 3D points lying on the occupancy level set of one half: S = {xs|oθ(xs) = 0.5}. Wang
et al. propose NeuS [43], a surface reconstruction method defining the surface as the zero-set of an SDF:
S = {xs|SDFθ(xs) = 0}. They present a novel volume rendering formulation free of bias in the first-order
of approximation. Both UNISURF and NeuS enable surface reconstruction without pixel mask supervision.

In the work by Rematas et al., Urban Radiance Fields [31] enables 3D reconstruction and novel view
synthesis by fusing RGB and lidar sweeps in urban outdoor scenes. Utilizing free space enforcement through
an impulse-based surface penalty, the neural representation is encouraged to converge to more defined sur-
face representations.

Martin-Brualla et al. develop NeRF-W [22], or NeRF in the Wild, an extension to NeRF that enables
radiance fields on an unstructured collection of images. Key contributions include the use of a lower-
dimensional latent embedding space for handling images taking under different lighting, weather, or camera
conditions, and an additional uncertainty head that handles transient elements in various images.

2.3.2 Convolutional Occupancy Networks

While NeRF has proven to be extremely popular, other neural implicit representations have also been ex-
plored. Peng et al. propose Convolutional Occupancy Networks (CON) [29], an implicit representation
that provides stronger structured reasoning and easy extension to larger scenes. CON employs a voxel fea-
ture grid that allows for interpolation of fine details. Additionally, CON represents spatial geometry via
occupancy, a spatial representation that is bounded within [0, 1], with values at 0.5 representing surface
boundaries.

2.4 Neural Implicit SLAM

Traditional radiance fields are trained using ground truth or pre-calculated camera poses, lacking the local-
ization capabilities required for SLAM. iNeRF [32] shows that radiance fields could be inverted to retrieve
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camera poses given an image. BARF [20] is able to construct a radiance field given rough initial guesses
using a hierarchical approach that procedurally added detail. Such approaches are not suited for real-time
operations, but show that localization and pose correction is possible for neural implicit methods.

Inspired by NeRF, Sucar et al. developed iMAP [41], a SLAM framework that performs implicit map-
ping and positioning in real-time. iMAP showcases that an MLP can serve as the only scene representation
for a SLAM system. In particular, this method is capable of efficient geometry representation with auto-
matic detail control, as well as plausible completion of unobserved scenes due to the implicit nature of the
representation.

NICE-SLAM [46] is another exploration into neural implicit SLAM, utilizing CON as opposed to radi-
ance fields. CON has stronger structured reasoning guarantees than iMAP, preventing catastrophic forgetting
through local updates to a voxel feature grid. The feature grid is also extensible for dynamic scaling to larger
scenes, a process that is difficult for the fixed-size MLP representation used in NeRF-based approaches.

NeRF-SLAM [32] offers another approach for neural implicit SLAM, focusing on improving photo-
metric accuracy and rendering. NeRF-SLAM utilizes state-of-the-art tracking from optical flow developed
in DROID-SLAM [42]. Their novel contribution involves uncertainty-weighting in the training of the neu-
ral radiance field, thus improving robustness to noisy depth maps. Their mapping process simultaneously
optimizes the pose and the neural parameters.

2.5 Learning-based 3D Reconstruction and SLAM

Building on top of the dense-SLAM paradigm and TSDF-Fusion originally popularized by KinectFusion [27]
and other previous work [11], RoutedFusion [44] learns the signed distance update function and performs
denoising and outlier correction of the input depth map. This approach is real-time capable and overcomes
the challenges of hand-tuning for sensor-specific and scene-specific conditions by instead learning these
characteristics a-priori.

Sandström et al. [35] propose SenFuNet, a deep-learning method for multi-sensor depth fusion to per-
form 3D reconstruction. Their pipeline is end-to-end trained in a light-weight online fashion, allowing for
real-time capability. Their method locally emphasizes more accurate sensors for different scene conditions
and is able to handle time asynchronous and non-rigidly mounted sensors, enabling such possibilities as
multi-agent reconstruction.

The current state-of-the-art SLAM system is DROID-SLAM [42]. DROID-SLAM employs an end-
to-end differentiable architecture that leverages the strengths of both traditional and deep methods. Key
innovations include multi-frame handling and differentiable Dense Bundle Adjustment (DBA) that allows
extensibility in the use of stereo or RGBD inputs without retraining. To achieve greater efficiency, DROID-
SLAM employs custom CUDA kernels.

2.6 Uncertainty in Computer Vision

In the development of deep learning methods over the past decade, models and architectures have continued
to grow in size and complexity, rendering the mechanisms for regression and classification tasks a black
box. To address the explainability in deep models, producing uncertainty and quantifying confidence in
predictions has become an area of active research [1].

Uncertainty can be characterized by two types of uncertainty. The first kind of uncertainty is aleatoric
uncertainty, which describes the measurement uncertainty—i.e. uncertainty inherent to the observation due
to the sensor noise. In contrast, epistemic uncertainty can be characterized as model uncertainty—i.e. the
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uncertainty in the model parameters. Aleatoric uncertainty cannot be reduced with more observations as the
uncertainty derives from intrinsic qualities of the input data, whereas epistemic uncertainty can be addressed
by observing additional information.

Within computer vision, Kendall and Gal [19] showcase a way to model epistemic and aleatoric un-
certainty in Bayesian neural networks (BNNs). In their work, they model epistemic uncertainty via Monte
Carlo dropout, a variational Bayesian approximation. The aleatoric uncertainty is modeled from a second
head connected to the output of the BNN and formulated implicitly via a Laplacian loss.

Bae et al. [2] leverage learning aleatoric uncertainty to refine surface normal predictions from RGB
images. They introduce the von Mises-Fisher distribution for modeling the surface normal distribution and
minimize the angular difference between the prediction and ground-truth. They use pixel-wise feature MLPs
to refine the normal directions and use uncertainty-guided sampling to ensure a more balanced training
dataset. This work is then applied to depth refinement in IronDepth [3], where the normal information is
used to propagate depths from surrounding information based on planarity classification.
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Chapter 3

Methods

3.1 NICE-SLAM Recap

NICE-SLAM, short for ”Neural Implicit sCalable Encoding” SLAM, is built off of the Convolutional Oc-
cupancy Networks [29] framework for the scene representation. This approach tracks the occupancy using
an encoded 3D grid of features that can be passed, after interpolation, through an MLP decoder to acquire
the occupancy. Taking inspiration from NeRF [24], the approach leverages volume rendering to generate
2D depth maps, which can be directly compared with the captured depth map in the objective function. We
provide a recap of key concepts in the NICE-SLAM pipeline here, an overview of which can be found in
Figure 3.1.
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Figure 3.1: NICE-SLAM pipeline from the original paper. A stream of RGBD images (shown on the left)
are passed to the pipeline, which minimizes the geometric and photometric loss with the depth and RGB
images generated by NICE-SLAM via volume rendering. The scene is represented by hierarchical feature
grids, where the fine-level occupancy is constructed from mid-level occupancy output and the fine-level
occupancy residual. © 2022 IEEE.
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3.1.1 Encoded Feature Grid

A key differentiator between iMAP and NICE-SLAM is their choice of scene encoding. iMAP leverages a
NeRF-like representation where the scene is encoded in the weights of an MLP. In contrast, NICE-SLAM
encodes the scene in hierarchical voxel grids of features. For any sampled point, a feature from these voxel
grids can be tri-linearly interpolated from its neighbours. These features can then be fed, in a coarse-to-fine
manner, through their respective decoder to extract the occupancy probability of the given point.

The geometry is encoded in three feature grids—coarse, middle, and fine. Each feature grid ϕlθ has
an associated decoder f l, where l ∈ {0, 1, 2}. Additionally, the colour is encoded in a fourth feature grid
ψω and decoder gw, used for further scene refinement after initial stages of geometric optimization. The
observed scene geometry is reconstructed from the middle and fine resolution feature grids, with the fine
feature grid output being added to the middle grid occupancy in a residual manner. The standard geometric
decoder MLP architecture employed in NICE-SLAM is detailed in Figure 3.2.
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Figure 3.2: The standard geometric MLP architecture used in NICE-SLAM.

The colour decoder is similar in construction, but outputs three values for RGB information and does
not utilize fine features.

3.1.2 Volume Rendering

NeRF and NICE-SLAM’s approach to scene rendering leverages volume rendering for occlusion-aware
generation of depth maps and RGB images. This process involves sampled points pi ∈ R3 from depth
di ∈ R1 along a ray r ∈ R3 cast from origin O ∈ R3, as detailed in Eq. (3.1).

pi = O+ dir, i ∈ {1, ..., N} (3.1)

The coarse-level occupancy ocpi
and fine-level occupancy ofpi are the outputs of our decoder networks

f l. The colour output is produced by the decoder gw. We show how the different outputs of the network are
used to generate occupancies and colours in Eq. (3.2).
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ocpi
= f0(pi) ofpi

= f1(pi) + f2(pi) ci = gw(pi) (3.2)

From these occupancies along the ray, volume rendering constructs a weighting function, wi, based on
the termination criteria in alpha-compositing occupancies op as described in Eq. (3.3). This is done for both
the coarse-level and fine-level occupancies. This weight represents the discretized probability that the ray
would terminate at that particular point.

wc
i = ocpi

i−1∏

j=1

(1− ocpj
), wf

i = ofpi

i−1∏

j=1

(1− ofpj
) (3.3)

To supervise NICE-SLAM, we require a depth map and RGB image rendering to compare against the
captured sensor data. To get the associated depth from the weighting function described previously, we take
the weighted average of the depth values along each ray. A similar approach extracts the colour from the
feature grid through the decoder gw. These approaches are described in Eq. (3.4).

D̂c =

N∑

i=1

wc
idi, D̂f =

N∑

i=1

wf
i di, Î =

N∑

i=1

wf
i ci (3.4)

This volume rendering method also provides us a variance from the discretized selection of points used
in the process. By taking the depth differences multiplied by the weighting function, we can extract a
variance that is a composite of the model uncertainty and sampling uncertainty, as shown in Eq. (3.5).

Ŝc
D =

N∑

i=1

wc
i

(
D̂c − di

)2
, Ŝf

D =
N∑

i=1

wf
i

(
D̂f − di

)2
(3.5)

3.1.3 Mapping

The mapping process in NICE-SLAM utilizes an L1 loss between the rendered (D̂m) and captured depth
maps (Dm), as well as the rendered (Îm) and captured RGB images (Im). These parameters are combined
through a weighting variable, λpm. In implementation, M pixels, or rays, are sampled from the RGBD
images to reduce computation and mimic the approach used in stochastic gradient descent (SGD). The loss
functions are detailed in Eqs. (3.6) to (3.8).

Lmap = Lc
g + Lf

g + λpmLp (3.6)

Ll
g =

1

M

M∑

m=1

|Dm − D̂l
m|, l ∈ {c, f} (3.7)

Lp =
1

M

M∑

m=1

|Im − Îm| (3.8)

We note that the equations have been fully reproduced from the original paper. In the official code
release, the coarse mapper acts as a separate process and is refined separately from the middle-fine mapper.
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3.1.4 Tracking

The tracking loss in NICE-SLAM scales the L1 difference by the depth variance calculated from the variance
in the weighted occupancy. The loss is also formulated through a combination of geometric and photometric
losses controlled by a weight parameter λpt, and described in detail in Eqs. (3.9) and (3.10). The original
NICE-SLAM paper describes using both the coarse and fine depth renderings in its loss function to perform
short-range predictions on scene geometry.

Ltrack = Lg,var + λptLp (3.9)

Lg,var =
1

Mt

Mt∑

m=1

|Dm − D̂c
m|√

Ŝc
D

+
|Dm − D̂f

m|√
Ŝf
D

(3.10)

Despite the claims in the original paper, the officially released code only uses the fine resolution render-
ing for its tracking loss function.
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3.2 Uncertainty-aware Loss

The previous section details how the original NICE-SLAM constructs its loss functions and the general
concepts employed throughout its SLAM pipeline. We aim to introduce uncertainty-awareness to the NICE-
SLAM framework to improve robustness against sensor or aleatoric noise, which can be a product of the
sensor itself, or the processing used to generate the depth map.

We motivate our formulation of sensor noise under the assumption of a Gaussian noise distribution on a
per-ray basis. That is, each pixel m in the captured sensor data is treated independently. Consequently, the
measured depth is sampled from a probability distribution described in Eq. (3.11).

P (Dm) =
1√
2πβ2m

e
− (Dm−µm)2

2β2m (3.11)

We take µm to be the true depth and βm to be the standard deviation of the depth reading of a specific
pixel. When we aggregate all depth sensor information, we get the joint density of the per-ray depth obser-
vations. As previously mentioned, we assume the error in each per-pixel depth sensor to be independent and
identically distributed (I.I.D.). The joint distribution is described in Eq. (3.12).

P (D1, ..., DM ) = P (D1)...P (DM )

=
M∏

m=1

P (Dm)

=
M∏

m=1

1√
2πβ2m

e
− (Dm−µm)2

2β2m (3.12)

The best estimate of the depth can thus be determined via maximum likelihood estimation (MLE). The
MLE is described in Eq. (3.13).

argmax
θm

P (D1, ..., DM |θm) = argmin
θm

− log(P (D1, ..., DM |θm))

= argmin
θm

M∑

m=1

(Dm − µm)2

2β2m
+

1

2
log(β2m) (3.13)

where θm represents the parameters that define the mean and standard deviation of the distribution.
As previously discussed, the original implementation renders the per-pixel depth and its volume-rendered

variance. This could naively be applied to the previous equations with the rendered depth D̂m representing
µ and the variance ŜD representing β2. Unfortunately, such an approach is poorly motivated as this calcu-
lated variance is related to the model confidence, as opposed to the sensor-specific noise. In practice, the
uncertainty we strive to model is aleatoric uncertainty and should be distinct from the model confidence.

One interpretation of this variance calculated from the volume rendering is as the epistemic uncertainty.
With an increasing number of observations, the epistemic uncertainty should shrink, driving the model
towards sharp bounds, an attribute that is less affected by the sampling and rendering biases described
further in Appendix B.

We instead want to have a separate process to extract aleatoric uncertainty. We take the concept of
implicitly learned aleatoric uncertainty from the work of Kendall and Gal [19]. We investigate multiple
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methods to generate uncertainty, including the use of an analogous volume-rendered approach, a simple
per-pixel MLP, and a patch-based MLP. These approaches take in spatial information from the specific
image frame, and potentially from the scene encoding, to generate uncertainty β̂, distinct from the rendered
variance ŜD. The probability formulation and objective function thus substitute µ and β with Dm(ϕm)
and β̂(ξm), as shown in Eq. (3.14). The depth model is parameterized by ϕ and the uncertainty model is
parameterized by ξ. We thus perform MLE by minimizing the arguments θ = {ϕ, ξ}.

arg max
ϕm,ξm

P (D1, ..., DM |ϕm, ξm) = arg min
ϕm,ξm

M∑

m=1

(Dm − D̂m)2

2β̂2m
+

1

2
log(β̂2m) (3.14)

We ensure that our occupancy network is decoupled from the aleatoric uncertainty model to prevent
adverse effects on the model confidence. This formulation permits the model uncertainty to be driven down
to reduce the effects of weighting function bias described in Appendix B, while enabling the implicit learning
of the variance parameters. In practice, we assume a Laplacian distribution, corresponding to an L1 loss,
which was found by Kendall and Gal [19] to perform better on vision tasks. The probability formulation is
described in Eq. (3.15).

P (D1, ..., DM ) = P (D1)...P (DM )

=

M∏

m=1

P (Dm)

=

M∏

m=1

1

2βm
e
− |Dm−µm|

βm (3.15)

The corresponding best estimate via maximum likelihood estimation (MLE), given a parameterized model
of depth and uncertainty, can be found in Eq. (3.16) The formulated loss objective is shown in Eq. (3.17).

arg max
ϕm,ξm

P (D1, ..., DM |ϕm, ξm) = arg min
ϕm,ξm

− log(P (D1, ..., DM |ϕm, ξm))

= arg min
ϕm,ξm

M∑

m=1

|Dm − D̂m(ϕm)|
β̂m(ξm)

+ log(β̂m(ξm)) (3.16)

L =

M∑

m=1

|Dm − D̂m(ϕm)|
β̂m(ξm)

+ log(β̂m(ξm)) (3.17)
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3.3 Modifications to Uncertainty-aware Loss

In Section 3.2, we provided an argument for constructing a loss function that implicitly extracts uncertainty
under the supervision of noisy depth maps. Taking inspiration from other works that utilize uncertainty for
rendering 3D scenes, we propose two potential additions.

The first modification was introduced in NeRF-W [22], where they enforce a minimum uncertainty value
βmin. As done in their work, we apply softplus activation to the output ỹm of our network, thus bounding ỹm
within (0,∞). The addition of a minimum uncertainty —or a “minimum importance” factor—consequently
changes the bound of the uncertainty to (βmin,∞). Zero bounds can generate unstable results as some losses
are heavily blown up do to division by zero, and adding this factor improves training stability. The softmax
and minimum importance factor can be seen in Eq. (3.18).

β̂m = βmin + log (1 + exp (ỹm)) (3.18)

The second alternative modification is to transform the loss function from uncertainty to confidence.
That is, we have some confidence Ĉ in the depth reading, bounded within (0, 1), achievable using a logistic
activation function. Practically, this enforces an uncertainty with the bounds of (1,∞). This results in a loss
function shown in Eq. (3.19).

Lg =
M∑

m=1

Ĉ|Dm − D̂m| − log(Ĉ) (3.19)

This loss function is similar to the one used in RoutedFusion [44]. One addition Weder et al. contribute
to this formulation is a scaling factor λc on the log term, which controls the expressivity or range of the
confidence values, modifying the loss function as shown in Eq. (3.20).

Lg =
M∑

m=1

Ĉ|Dm − D̂m| − λc log(Ĉ) (3.20)
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3.4 Uncertainty Network Architecture

NICE-SLAM employs a hierarchical training scheme in mapping, refining the scene geometry in a coarse-
to-fine manner. More specifically, the mapping process runs through three distinct stages. The first stage is
the middle-grid refinement where rough geometry can be learned. The second stage of refinement begins
to jointly optimize the fine-grid and middle-grid. The output of the fine-grid decoder is added to the output
of the middle-grid decoder in a residual fashion. The final stage incorporates the colour-grid and decoder
refinement, providing photometric consistency to the depth refinement process.

In this work, we first evaluate results using only depth maps in a single-sensor. As such, the second and
final stage are identical in our training pipeline as we do not perform colour refinement. We additionally
retain the first stage loss (middle-grid only) using the simple depth difference, allowing for easier learning of
coarse geometry. We provide details on extending this method to a two-sensor environment in Section 3.5.

3.4.1 Uncertainty via Grid of Features

Capturing uncertainty in an analogous fashion to the depth and colour is a natural extension under the NICE-
SLAM framework. We present the architectural changes necessary for this approach in Figure 3.3.

Decoder NetworkFeature Grids

Middle Occupancy

Fine Occupancy

Uncertainty

Pre-trained Middle

Pre-trained Fine

Uncertainty

Camera 
Pose

Ray / Point 
Sampler

P (N,3)

Fm (N,32)

Gaussian Positional 
Encoding

Fp (N,93)

Ff (N,32)

+

2D Feature Maps

F2D (1,F×K2)

Legend
Architecture change

+
Feature concatenation

Feature addition

Figure 3.3: Volume-rendered uncertainty NICE-SLAM pipeline. The additions to the original pipeline are
bordered by dashed lines. We have an additional grid of features for uncertainty and an additional decoder.
The uncertainty network takes in a subset of 2D feature map information on a per-ray basis to provide
additional useful information for calculating uncertainty.

This volume-rendered approach is similar to the approach taken in NeRF-W [22], where they get an un-
certainty value at each sampled point along the ray and render the uncertainty using the weighting function,
similar to Eq. (3.4). In this approach, we append an additional feature grid for uncertainty and initialize an
associated decoder hw. Equation (3.22) show the uncertainty rendering equations.
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bi = hw(pi) (3.21)

β̂ =
N∑

i=1

wf
i bi (3.22)

The feature grid and its associated decoder are implicitly trained throughout the fine and colour stages of
the optimization process using the modified loss function as described in Eq. (3.17). This approach allows
for aggregation of uncertainty information across frames. Knowledge of uncertain regions, such as edges,
can be propagated from one frame to the next.

However, estimating the aleatoric or sensor uncertainty solely from points sampled in the 3D scene fails
to capture the per-pixel information of the image representation. We can instead use both the observed 3D
scene and pixel-wise information extracted from 2D feature maps. We explain these 2D feature maps in
more detail in Section 3.4.2. We append the informative features from the 2D feature maps, alongside per-
point depth in the ray sampling, to the positionally encoded points. These features are then fed as input into
the decoder network to output the per-pixel uncertainty for each sampled ray using the volume rendering
approach from the point occupancy weighting.

3.4.2 Uncertainty via Ray-based MLP

In the previous section, we presented a natural extension to NICE-SLAM using a 3D grid of features. Such
an approach aggregates information over frames. However, this approach is dependent on the camera pose
for the scene rendering and reliant on the model occupancy for volume rendering. These aspects naturally
couple the aleatoric and epistemic uncertainty of the SLAM pipeline, which may limit the utility of the
output uncertainty.

A specific long-term goal of this project is to extend the results to the multi-sensor configuration. Within
that environment, we wish for the uncertainty to be decoupled from the epistemic uncertainty of the 3D
scene, allowing for us to balance the influence of both sensors. An additional concern within the NICE-
SLAM framework is the computational overhead. The original implementation only uses a sparse sub-
selection of pixels, or rays, to allow for real-time capable operation. Volume rendering is one of the more
expensive operations within NICE-SLAM and an additional rendering for each sensor may be prohibitively
expensive.

Consequently, we propose a simpler approach to derive a ray-specific uncertainty through the use of 2D
feature maps that contain potentially important features. We can leverage cheaply available metadata, as
was done in SimpleRecon [36], to capture sensor noise from the 2D feature maps generated from the depth
readings. We investigate plausible per-pixel (per-ray) features which include:

1. Dm ∈ R1, the measured depth value

2. N ∈ R3, the surface normal direction in camera frame

3. dx ∈ R1, the horizontal gradients of Dm

4. dy ∈ R1, the vertical gradients of Dm

5. θ ∈ R1, the incident angle between local ray and surface normal
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The above features are fed through a simple MLP network h2w, similar in construction to the MLPs
used for the occupancy decoder in vanilla NICE-SLAM. We use a network with 5 intermediate layers with
32 nodes each, activated via ReLU. Figure 3.4 shows the different features used as inputs to the MLP to
leverage the 2D information available in the image.

(a) Depth (b) Horizontal Gradient (c) Vertical Gradient

(d) Local Ray Direction (e) Surface Normal (f) Incident Angle

Figure 3.4: 2D feature maps used for pixel-wise ray features. (Top) Dm, dx, dy (Bottom) local, N, θ

3.4.3 Uncertainty via Patch-based MLP

In Section 3.4.2, we proposed a simple MLP network trained to derive uncertainty from a set of cheaply
available metadata. Such an approach is notably low-dimensional, which may lead to poor results without
additional local context.

We propose a natural extension to the previous method by using a region-based expansion of the re-
ceptive field of the ray. That is, we expand the ray kernel to a 5×5 patch, increasing the number of input
features by a factor of 25. This patch of pixels gives local context and local correlation of uncertainty for
areas near edges or with high frequency features. To illustrate the difference in coverage, we show the 1×1
ray selection vs. the 5×5 patch selection in Figure 3.5.

Figure 3.5: Visual comparison between the coverage using a single pixel compared to a patch of pixels.
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In implementation, the ray and patch-based approaches are closely coupled and we will refer to these
as the 2D MLP approach. We showcase an overview of the the data flow in Figure 3.6. This is distin-
guished from the volume-rendered approach which captures accumulated understanding of uncertainty via
a volumetric grid of features.
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Figure 3.6: 2D MLP uncertainty NICE-SLAM pipeline. The additions to the original pipeline are bordered
by dashed lines. We have an additional MLP for the uncertainty estimation in pink. The uncertainty network
takes in a subset of 2D feature map information on a per-ray basis to provide additional useful information
for calculating uncertainty.

In contrast to the 3D approach, or volume-rendered approach, the 2D MLP approach does not aggregate
information across frames, relying only on the current frame for information to extract uncertainty. The
MLP h2w is not volume rendered across the scene, allowing for better efficiency and access to the estimated
uncertainty directly from the set of features ζ, as shown in Eq. (3.24).

β̂ = h2w(ζ) (3.23)

(3.24)

The extracted features zeta are the input features listed above for each pixel in the 1×1 or 5×5 patch.
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3.5 Aligned Two-sensor Extension

The methods described so far have encompassed implicitly learning an uncertainty given a single sensor.
For any given pixel, this approach only has a single observation. We extend this single-sensor approach
to incorporate a second sensor, which we assume to be aligned—i.e. in the same frame of reference—and
synchronized. If we again assume that each depth observation is I.I.D., the joint likelihood we wish to
maximize is the product of the probability distributions for each pixel in each sensor.

Given two synchronized and aligned sensors, we can sample a set of pixels m ∈ {1, ...,M} from depth
sensor A and depth sensor B. The corresponding generalized loss function is shown in Eq. (3.25).

L =
M∑

m=M

(
|Dm,A − D̂m,A|

β̂D,m,A

+ log(β̂D,m,A) +
|Dm,B − D̂m,B|

β̂D,m,B

+ log(β̂D,m,B)

)
(3.25)

One interpretation of this objective function is that the pipeline implicitly learns the weighting between
these two sensor observations. The loss function penalizes large uncertainties via the log terms, and implic-
itly learns the uncertainty for both sets of observations as the model depth is optimized.

To accommodate the two-sensor extension, we make a few modifications to the original code to aggre-
gate and combine depth information. These changes are required to ensure that each sensor’s information is
equally utilized throughout the NICE-SLAM pipeline. We detail these changes in Appendix D.
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Experiments and Results

4.1 Evaluation Criteria

We use the same metrics as presented by iMAP [41] and NICE-SLAM [46]. These errors can be divided
between:

1. Tracking Error. We use the absolute trajectory error (ATE) RMSE [40] to compare tracking error
across methods. This error normally computes the translational difference of the track after least-
squares alignment. We have modified this error to be computed without least-squares alignment to
better analyze drift, as the initial pose is fixed at the ground-truth pose.

2. 3D Metrics (Reconstruction). The 3D metrics are evaluated using: Accuracy (cm)—the mean dis-
tance from a point in the generated mesh to the ground-truth mesh; Completion (cm)—the mean
distance of the ground-truth mesh to the generated mesh; and Completion Ratio (< 5 cm %)—the
percentage of points in the ground-truth mesh that have a point within 5 cm of the generated mesh.

3. 2D Metric (Rendering). The average L1 depth loss between 1000 randomly rendered depth maps
from the reconstructed and ground-truth meshes.

As noted in Appendix A.3, NICE-SLAM produces stochastic results for each run, even when random
number generator seeds are provided. As such, single run results cannot be directly compared as the dif-
ference in performance may be simply attributed to the stochasticity of the program. To address this issue,
we perform repeated tests and report mean results for greater robustness to the stochasticity inherent to
NICE-SLAM.

We also employ unpaired—also known as independent sample or Welch’s—t-tests [45] to evaluate the
significance of the difference in results. As each of our runs is independent of other runs, we compare using
an unpaired assumption. Additional assumptions for an unpaired t-test include:

• The NICE-SLAM outputs are randomly sampled and reflective of the true distribution.

• The true performance is approximately normal in its distribution.

• There should be no extreme outliers in either set of samples.
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The unpaired t-test is a two sample location test that compares if two sample populations have the same
mean. This analysis is completed by determining the statistic t and the degrees-of-freedom ν. Given the
sample means X{1,2} and the standard errors sX̄{1,2}

, t and ν can be calculated using Eqs. (4.1) and (4.2).

t =
∆X

s∆X̄

=
X1 −X2√
s2
X̄1

+ s2
X̄2

(4.1)

ν ≈

(
s21
N1

+
s22
N2

)2

s41
N2

1 ν1
+

s42
N2

2 ν2

(4.2)

These values can then be used to identify the probability given by Student’s t-distribution that the two
sample means are equal. If we assume significance at P < 0.05, we can determine if an improvement—i.e.
an increase in the mean performance—should be considered significant.
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4.2 Datasets

In evaluating the performance of our SLAM pipeline, we explore both synthetic and real datasets. We
compile a summary of datasets we consider in Table 4.1.

Table 4.1: Summary of different datasets used to evaluate our method.

Source Dataset Type Sensor Technology Release

TUM TUM-RGBD [40] Real Structured Light 2012
ETH-CVL SFN-Replica [35] Replica [39] Structured Light (Synthetic) 2022
ETH-CVL SFN-Replica [35] Replica [39] SGM Stereo 2022
ETH-CVL SFN-Replica [35] Replica [39] PSMNet 2022
ETH-CVL NS-Replica v2 Replica [39] Structured Light (Synthetic) 2022

The Replica Dataset [39], developed by Meta Reality Labs (formerly Facebook Reality Labs) in 2019,
offers a highly photo-realistic synthetic environment for 3D reconstruction and SLAM tasks. This environ-
ment includes single rooms, office spaces, and larger multi-room apartment spaces. As this environment can
be synthetically generated, there are no errors in the the ground truth meshes and annotations. We note there
is negligible quantization error based on the depth scale of the depth maps.

Within the synthetic Replica environment, custom trajectories, custom camera models, and custom sen-
sor configurations can be used to generate custom datasets. iMAP [41] and NICE-SLAM [46] provide a
selection of custom datasets that include office scenes 0-4 and room scenes 0-2. These datasets consist of
2000 frames employing a resolution of 1200 × 680, a horizontal FoV of 90◦, and a single RGB-D sensor.
SenFuNet [35] provides a dataset containing scenes from offices {0,1,3,4}, rooms {0,2}, hotels {0}, apart-
ments {1}, and frl apartments 0-1. Each scene has several trajectories ranging from ∼300 to ∼3000 frames
employing a resolution of 512 × 512, a horizontal FoV of 90◦, and a stereo pair of RGB-D sensors. The
SenFuNet dataset further processes the depth maps using a structured light sensor noise model [4, 16], and
provides dense depth maps using stereo-based semi-global matching (SGM) [17] and PSMNet [10]. These
depth representations reflect highly common sensors used for depth ranging. Example depth maps from
SFN-Replica are shown in Figure 4.1.

The SL noise model involves random offsets to shift pixel locations in the image and bilinearly interpo-
lates the ground truth depth values to simulate SL sensor noise. The shifts induce noise into the depth maps
while the bilinear interpolation ensures local correlation for the depth map. Subsequently, the depth values
are converted to disparity where I.I.D. Gaussian noise is stacked on top of the depth values. Quantization
rounding is then applied prior to converting disparity back into depth values. A more detailed explanation
can be found in [4, 16].

NS-Replica is a dataset generated with only a single RGBD sensor and without any noise. We induce
noise into this dataset using the same noise model as in SFN-Replica, but scaled to the dimensions of the
NS-Replica images. This provides us with another synthetic dataset, but with a much smoother trajectory
compared to SFN-Replica. We also note that this dataset has much finer depth resolution, with every meter
represented by an intensity difference of 6533.5 compared to 1000 in SFN-Replica.

Nevertheless, the sim2real gap is a known phenomenon that impedes models trained on synthetic data
from operating in the real world, even with synthesized noise models. Consequently, testing and validat-
ing on real-world datasets is required to show that performance can be transferred into practical operating
settings. An older dataset is the TUM-RGBD Dataset [40]. This dataset captured data using a Microsoft
Kinect, which leverages SL methods for depth extraction. Some additional datasets that are not explored in
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Figure 4.1: (Top) GT depth maps. (Middle) SL depth maps. (Bottom) SGM Stereo depth map. Replica
scenes rendered from the SFN-Replica dataset.

this work include ScanNet [12], which also uses an SL-based sensor, and the apartment scene captures with
an Azure Kinect v2 RGBD camera, which uses a ToF sensor, recorded for NICE-SLAM [46].
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4.3 Implementation Details

We leave many of the hyperparameters from vanilla NICE-SLAM as is. We retain the standard grid size of
0.32 m for the middle feature grid and 0.16 m for the fine feature grid on the Replica datasets. We retain the
standard grid size of 0.16 m for the middle feature grid and 0.08 m for the fine feature grid on the TUM-
RGBD dataset. The ray sampling strategy remains the same, with 32 points uniformly sampled along the
ray and 16 points sampled uniformly near the depth reading. The feature grids store 32-dimensional features
that are interpolated for the point sampling and passed into the standard NICE-SLAM architecture.

We leave the learning rates for feature grid optimization under the same schedule—i.e. 0.1 for the middle
stage and 0.005 for the fine stage. The ”bundle adjustment” camera pose learning rate remains the same
(0.001) when tracking is enabled, but is set to 0 when we run under mapping-only conditions. The decoder
learning rate is turned on and set to 0.005 during the fine stage. The tracking learning rate for the camera
pose is set to 0.001. We set the colour weighting parameters, λpm and λpt, to 0, or equivalently the terms
are removed from the loss function.

The dataset specific parameters are specified in Table 4.2. These parameters were not tuned and may be
optimized to further improve performance. Specifically, the learning rates may be adjusted under the new
loss formulation to improve stability.

Table 4.2: Parameter configurations for each dataset, including the interval between mapping steps, the # of
sampled pixels, # of iteration steps, and the refinement stage transition point. Tr.: Tracking Its: Iterations
(optimization steps) Trans.: Transition (from middle-only to middle + fine stage)

Dataset Map Interval # Tr. Px # Map Px # Tr. Its # Map Its # 1st Map Its Fine Trans.

TUM-RGBD 1 5000 5000 200 60 1500 40%
SFN-Replica 5 5000 5000 10 60 1500 40%
NS-Replica v2 5 5000 5000 10 60 1500 40%

We also note that the official code release does not use the coarse scene geometry in its tracking or
mapping loss. As such, we run NICE-SLAM without the coarse mapper for our experiments.

We also introduce various new parameters using the uncertainty-aware loss function. These parameters
include which architecture to use, the choice of minimum importance factor βmin, the patch size, and the
selection of input features. The different parameter choices are discussed in Section 4.5.
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4.4 Evaluating with Ground-truth Data

4.4.1 Ground-truth Depth

We compare the results of 3D reconstruction performance without tracking using the different noise models
with the SFN-Replica dataset. We find that the SL model has the best performance against using the ground
truth depth maps, followed by PSMNet stereo rendering and SGM stereo rendering respectively. The mean
metrics can be found in Table 4.3, with the standard deviation in parentheses. We refer to the original
implementation of NICE-SLAM as “OG” in the following tables in this section. We also track the number
of trials performed in each table under the column “N”.

Table 4.3: 3D Reconstruction evaluation metrics comparing the original loss acting on depth maps with
different noise models in SFN-Replica.

Scene Sensor Tr. Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 GT - OG 10 - 2.38 (0.08) 1.73 (0.02) 96.4 (0.2) 1.35 (0.03)
Office 1 GT - OG 10 - 2.57 (0.27) 1.53 (0.04) 96.8 (0.3) 1.21 (0.04)
Room 2 GT - OG 10 - 1.81 (0.03) 1.73 (0.01) 97.1 (0.2) 1.25 (0.02)

Office 0 SL - OG 15 - 3.03 (0.17) 2.08 (0.02) 94.5 (0.2) 1.80 (0.03)
Office 1 SL - OG 15 - 2.71 (0.23) 1.66 (0.06) 96.1 (0.4) 1.37 (0.03)
Room 2 SL - OG 15 - 2.80 (0.09) 2.39 (0.02) 92.6 (0.3) 2.11 (0.02)

Office 0 SGM - OG 15 - 13.19 (0.83) 2.56 (0.03) 91.1 (0.3) 2.39 (0.04)
Office 1 SGM - OG 15 - 44.19 (3.09) 3.00 (0.04) 88.0 (0.3) 3.93 (0.11)
Room 2 SGM - OG 15 - 14.03 (1.72) 2.80 (0.05) 89.6 (0.5) 3.03 (0.05)

Office 0 PSM - OG 10 - 3.27 (0.14) 2.57 (0.03) 89.9 (0.2) 2.07 (0.03)
Office 1 PSM - OG 10 - 4.14 (0.32) 2.58 (0.02) 87.9 (0.3) 3.29 (0.39)
Room 2 PSM - OG 10 - 3.95 (0.14) 2.66 (0.03) 89.3 (0.2) 2.38 (0.03)

As one might expect, we see significant degradation of the reconstruction performance and rendering
results when we introduce noise into the original NICE-SLAM pipeline. The performance of NICE-SLAM
using the noiseless input depths represents an upper bound on the performance we may expect with our
uncertainty-aware modifications. We hope that by learning and scaling by uncertainty, we can approach the
results of using the ground-truth depth maps.

4.4.2 Proxy Uncertainty

Using an error map (absolute difference between ground-truth depth and noisy depth) as a proxy uncertainty,
we get a representative aleatoric uncertainty. This approach offers a more conservative upper bound on the
possible performance improvement with our learned uncertainty. In Figure 4.1, we can see both the original
depth map and a noise-injected depth map from the SL noise model for the SFN-Replica dataset. Figure 4.2
showcases the absolute difference between two such depth maps and the signed difference between the
two methods as rendered in the NS-Replica dataset. We note that depth differences are most noticeable at
discontinuities, at further distances, and with relation to radial lens distortion effects.

We run multiple baseline tests using the proxy uncertainty as a scaling factor in comparison to the orig-
inal loss function. The original loss functions are detailed in Section 3.1.3 for mapping and Section 3.1.4
for tracking. We employ modified loss functions, with the proxy ”ground-truth” error acting as βm. The
modified loss functions are akin to those found in Section 4.4.2, using the L1 formulation, and reproduced
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Figure 4.2: Absolute and signed depth difference between noiseless and simulated noisy depth maps.

without the log terms in Eqs. (4.3) and (4.4). Within the tracking loss, we incorporate the rendered uncer-
tainty Ŝf

D and the proxy error by summing the two together. We motivate this by the idea of scaling the loss
if we are either uncertain in the measurement or in the model.

Lg,map =
1

M

M∑

m=1

|Dm − D̂m|
βm

(4.3)

Lg,track =
1

Mt

Mt∑

m=1

|Dm − D̂m|

βm +
√
Ŝf
D

(4.4)

4.4.3 3D Reconstruction using Error-scaled Loss

We investigate the mapping-only, or 3D reconstruction, performance of NICE-SLAM on the SFN-Replica
dataset by employing GT poses. We present the mean and standard deviation, presented in parentheses, of
the SL and SGM models in Table 4.4.

Table 4.4: 3D Reconstruction evaluation metrics comparing the original loss and the scaled proxy loss for
the simulated depth maps in SFN-Replica. Bolded shows improvement. Italics shows degradation.

Scene Sensor Track Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 SL - OG 15 - 3.03 (0.17) 2.08 (0.02) 94.5 (0.2) 1.80 (0.03)
Office 1 SL - OG 15 - 2.71 (0.23) 1.66 (0.06) 96.1 (0.4) 1.37 (0.03)
Room 2 SL - OG 15 - 2.80 (0.09) 2.39 (0.02) 92.6 (0.3) 2.11 (0.02)

Office 0 SL - Proxy 10 - 2.82 (0.16) 1.94 (0.02) 94.8 (0.2) 1.56 (0.04)
Office 1 SL - Proxy 10 - 2.55 (0.27) 1.58 (0.03) 96.5 (0.3) 1.26 (0.05)
Room 2 SL - Proxy 10 - 2.72 (0.09) 2.26 (0.03) 93.2 (0.3) 1.86 (0.03)

Office 0 SGM - OG 15 - 13.19 (0.83) 2.56 (0.03) 91.1 (0.3) 2.39 (0.04)
Office 1 SGM - OG 15 - 44.19 (3.09) 3.00 (0.04) 88.0 (0.3) 3.93 (0.11)
Room 2 SGM - OG 15 - 14.03 (1.72) 2.80 (0.05) 89.6 (0.5) 3.03 (0.05)

Office 0 SGM - Proxy 10 - 12.35 (1.07) 2.30 (0.04) 92.7 (0.2) 1.91 (0.06)
Office 1 SGM - Proxy 10 - 45.84 (3.24) 2.71 (0.03) 89.4 (0.3) 3.44 (0.07)
Room 2 SGM - Proxy 10 - 13.12 (1.20) 2.35 (0.04) 94.0 (0.4) 2.04 (0.04)
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We see that the scaled loss improves 3D reconstruction metrics in nearly all cases and in all cases for
the 2D rendering metrics. We note, encouragingly, that 23/24 of the mean metrics have improved using the
proxy scaling method.

4.4.4 3D SLAM using Error-scaled Loss

We also investigate the effect of using scaled losses for the tracking component of NICE-SLAM as discussed
in Section 4.4.4. Table 4.5 shows the tracking error, reconstruction, and rendering performance comparisons.

Table 4.5: 3D SLAM evaluation metrics comparing the original loss and the scaled proxy loss for the
simulated depth maps in SFN-Replica. Bolded shows improvement.

Scene Sensor Track Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 SL OG OG 10 0.26 (0.03) 7.90 (0.56) 7.37 (0.94) 60.4 (3.0) 12.83 (1.38)
Office 1 SL OG OG 10 0.52 (0.24) 12.52 (4.03) 10.26 (1.76) 42.0 (8.8) 16.01 (4.67)
Room 2 SL OG OG 10 0.40 (0.34) 11.90 (7.73) 8.35 (3.10) 56.0 (7.6) 17.06 (11.7)

Office 0 SL Proxy Proxy 10 0.23 (0.04) 7.00 (0.51) 6.40 (0.69) 63.8 (3.1) 10.72 (1.29)
Office 1 SL Proxy Proxy 10 0.33 (0.06) 8.95 (2.51) 8.14 (0.73) 52.5 (5.0) 11.07 (1.52)
Room 2 SL Proxy Proxy 10 0.16 (0.05) 4.00 (0.88) 3.54 (0.67) 81.1 (5.8) 5.03 (1.32)

Office 0 SGM OG OG 10 0.18 (0.04) 15.22 (1.85) 5.92 (0.73) 63.2 (3.5) 9.67 (1.27)
Office 1 SGM OG OG 10 0.47 (0.15) 46.79 (5.21) 8.96 (1.39) 41.4 (8.2) 20.08 (8.63)
Room 2 SGM OG OG 10 0.22 (0.05) 15.63 (1.91) 4.61 (0.86) 72.1 (6.2) 7.24 (1.93)

Office 0 SGM Proxy Proxy 9 0.17 (0.04) 14.25 (1.23) 5.25 (0.63) 66.3 (4.1) 8.06 (1.32)
Office 1 SGM Proxy Proxy 10 0.36 (0.22) 45.50 (4.80) 6.53 (0.95) 54.5 (7.4) 10.57 (1.91)
Room 2 SGM Proxy Proxy 10 0.20 (0.08) 14.22 (1.57) 3.47 (0.49) 81.0 (5.9) 5.51 (1.58)

The proxy-based loss achieves improvement across all metrics (30/30) compared to the original im-
plementation of NICE-SLAM. In particular, we find that SL Room 2 performance greatly improves when
using the proxy scaling. We also note that the introduction of tracking increases the variance in perfor-
mance, which is shown by the ratio of significant results in the following section. Nevertheless, seeing
improvements across all metrics with tracking enabled is highly encouraging for pursuing online learned
uncertainty.

4.4.5 Statistical Analysis of Improvements

As discussed in Section 4.1, we also look at results using statistical methods. By employing unpaired t-
tests, we can see if the improvements meet our threshold of statistical significance (P < 0.05). We note
that from the previous sections, 53/54 metrics have shown improvement using the proxy error as a scaling
term. In Table 4.6, we show the results of the unpaired t-tests when comparing the original and the newly
implemented methods.

We find that 42/54 differences are statistically significant. Of these 42 significant results, we find that
every metric has improved. Of the 12 results that failed to meet our criteria for statistical significance, we
find that 11 results have improved. Among the mapping-only metrics, we find that 4/24 metrics do not
meet our threshold for significance. Among the tracking-enabled reconstructions, we find that 8/30 metrics
do not meet our threshold for significance. This overall improvement is compelling evidence that learning
uncertainty can improve the NICE-SLAM’s overall performance for accuracy and completion.
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Table 4.6: Statistical significance of differences based on Welch’s t-test. Italicized results are not statistically
significant (P > 0.05). Grayed results degraded using the proxy-based loss.

Structured Light SGM Stereo
Scene Track P ATE P Acc. P Comp. P Ratio P 2D P ATE P Acc. P Comp. P Ratio P 2D

Office 0 - - 0.8% ↑ 0.0% ↑ 0.4% ↑ 0.0% ↑ - 5.1% ↑ 0.0% ↑ 0.0% ↑ 0.0% ↑
Office 1 - - 8.1% ↑ 0.1% ↑ 4.1% ↑ 0.0% ↑ - 21.9% ↓ 0.0% ↑ 0.0% ↑ 0.0% ↑
Room 2 - - 1.3% ↑ 0.0% ↑ 0.0% ↑ 0.0% ↑ - 13.2% ↑ 0.0% ↑ 0.0% ↑ 0.0% ↑

Office 0 ✓ 4.6% ↑ 0.1% ↑ 1.8% ↑ 2.3% ↑ 0.2% ↑ 41.7% ↑ 19.3% ↑ 4.6% ↑ 9.4% ↑ 1.5% ↑
Office 1 ✓ 3.3% ↑ 3.1% ↑ 0.4% ↑ 0.5% ↑ 0.9% ↑ 20.3% ↑ 57.0% ↑ 0.0% ↑ 0.1% ↑ 0.7% ↑
Room 2 ✓ 5.3% ↑ 1.0% ↑ 0.1% ↑ 0.0% ↑ 1.0% ↑ 39.4% ↑ 8.7% ↑ 0.2% ↑ 0.4% ↑ 4.1% ↑

4.5 Architecture Evaluation

Given the different uncertainty architectures proposed in Section 3.4, we evaluate their performance effect
on SFN-Replica under the SL noise model. In these evaluations, we ensure we have five runs at a minimum
to provide a sample population for our statistical tests.

We select four variables to vary in these experiments to understand which architecture has the most
promising results. First we have the two different architectures for rendering uncertainty: 3D grid or 2D
patch. The ray-based MLP is equivalent to the patch-based MLP with a patch size of one. Next we vary the
minimum uncertainty value βmin: 1e-1 m or 1e-3 m. We vary the kernel size or patch size: 1×1 or 5×5.
Lastly we select two options for the informative features. The first option is to use the depth and the incident
angle for a pixel feature dimension of two. The second option is to use the depth, the normal direction,
the image gradients, and the incident angle for a pixel feature dimension of seven. In total, we perform 16
ablations, whose trials1 detailed in Table 4.7, determine the best performing architecture.

Table 4.7: Description of different ablations for understanding the effect of different architectural and loss
methods.

Run Architecture Patch-size Dm Nm dx, dy θ βmin Notes

2D1K7FS 2D Ray 1 ✓ ✓ ✓ ✓ 1e-3 SFN-Replica
2D1K2FS 2D Ray 1 ✓ - - ✓ 1e-3 SFN-Replica
2D1K7FL 2D Ray 1 ✓ ✓ ✓ ✓ 1e-1 SFN-Replica
2D1K2FL 2D Ray 1 ✓ - - ✓ 1e-1 SFN-Replica
2D5K7FS 2D Patch 5 ✓ ✓ ✓ ✓ 1e-3 SFN-Replica
2D5K2FS 2D Patch 5 ✓ - - ✓ 1e-3 SFN-Replica
2D5K7FL 2D Patch 5 ✓ ✓ ✓ ✓ 1e-1 SFN-Replica
2D5K2FL 2D Patch 5 ✓ - - ✓ 1e-1 SFN-Replica
3D1K7FS 3D Grid 1 ✓ ✓ ✓ ✓ 1e-3 SFN-Replica
3D1K2FS 3D Grid 1 ✓ - - ✓ 1e-3 SFN-Replica
3D1K7FL 3D Grid 1 ✓ ✓ ✓ ✓ 1e-1 SFN-Replica
3D1K2FL 3D Grid 1 ✓ - - ✓ 1e-1 SFN-Replica
3D5K7FS 3D Grid 5 ✓ ✓ ✓ ✓ 1e-3 SFN-Replica
3D5K2FS 3D Grid 5 ✓ - - ✓ 1e-3 SFN-Replica
3D5K7FL 3D Grid 5 ✓ ✓ ✓ ✓ 1e-1 SFN-Replica
3D5K2FL 3D Grid 5 ✓ - - ✓ 1e-1 SFN-Replica

1We provide trial names based on the ablation parameters. These involve the MLP architecture, the patch size, the number of
features, and the use of a “small” or “large” regularizer: [2D/3D][1K/5K][2F/7F][S/L]
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4.5.1 2D Network Ablations

We first present results using the 2D feature map MLP using a 1×1 patch. Within this subset, we have
four ablation results between the choice of regularizer and the number of input features. These results are
summarized in Table 4.8.

Table 4.8: 3D SLAM evaluation metrics comparing the uncertainty-aware losses in SFN-Replica using the
2D ray MLP architecture. Bolded shows improvement. Italicized shows degradation. “2D1K2FL” achieves
the most consistent improvement across metrics.

Scene Sensor Track Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 SL - 2D1K7FS 10 - 2.97 (0.19) 2.06 (0.02) 94.7 (0.3) 1.79 (0.03)
Office 1 SL - 2D1K7FS 10 - 2.75 (0.19) 1.64 (0.04) 96.3 (0.3) 1.35 (0.05)
Room 2 SL - 2D1K7FS 10 - 2.88 (0.12) 2.41 (0.02) 92.4 (0.2) 2.14 (0.05)

Office 0 SL - 2D1K7FL 10 - 3.24 (0.34) 2.07 (0.03) 94.7 (0.3) 2.73 (1.44)
Office 1 SL - 2D1K7FL 10 - 2.80 (0.21) 1.65 (0.03) 96.2 (0.3) 1.36 (0.03)
Room 2 SL - 2D1K7FL 9 - 2.81 (0.06) 2.39 (0.03) 92.5 (0.4) 2.12 (0.03)

Office 0 SL - 2D1K2FS 10 - 2.93 (0.13) 2.10 (0.02) 94.4 (0.2) 1.90 (0.03)
Office 1 SL - 2D1K2FS 10 - 2.63 (0.20) 1.62 (0.03) 96.4 (0.3) 1.39 (0.05)
Room 2 SL - 2D1K2FS 10 - 2.91 (0.14) 2.49 (0.02) 91.7 (0.4) 2.22 (0.02)

Office 0 SL - 2D1K2FL 10 - 2.85 (0.09) 2.05 (0.02) 94.8 (0.2) 1.80 (0.03)
Office 1 SL - 2D1K2FL 10 - 2.80 (0.15) 1.61 (0.03) 96.5 (0.3) 1.40 (0.10)
Room 2 SL - 2D1K2FL 10 - 2.76 (0.11) 2.38 (0.03) 92.6 (0.3) 2.09 (0.04)

Using the 1×1 patch-based approach, we find improvement over some parameters and degradation in
others. We find that the simplest architecture “2D1K2FL”, employing two input features and a larger βmin,
has one of the better performances within this subset of ablations. This method improves across eight
metrics and observes degradation in two metrics. The remaining two metrics are within rounding error.
With few input parameters and a larger regularizer, the chance of overfitting may be limited by this particular
architecture, preventing the more wide-spread degradation we observe across other trials.

We next present results using the 2D feature map MLP using a 5×5 patch. Within this subset, we have
four ablation results between the use of regularizer and the number of input features. These results are
summarized in Table 4.9.

Within the patch-base approach, we find two methods achieve positive improvement across a majority
of metrics. Trials “2D5K7FL” and “2D5K2FS” both see improvements across eight metrics. “2D5K2FS”
saw fewer metrics degrade in performance after discounting rounding errors. Overall, however, both these
methods achieve marginal improvement over the baseline methods. The “2D5K7FS” trial experienced a
strong outlier that skewed results in the Room 2 scenes, as seen by how much its metrics diverge from the
other results. The other three trials congregate around a similar performance cluster. We see again that the
use of a larger regularizer βmin may be beneficial within the single sensor framework in improving metrics.
When using a smaller regularizer, the inclusion of fewer features may improve results.

However, the data we have is inconclusive and the evidence is limited in the above claims. We see
that that “2D5K2FL” appears to perform worse than “2D5K2FS,” which contradicts our belief that strong
regularizers should be beneficial in 3D reconstruction. Amongst the 2D MLP approaches, we decide to use
”2D5K2FS“ as the architecture of choice for further ablations.
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Table 4.9: 3D SLAM evaluation metrics comparing the uncertainty-aware losses in SFN-Replica using
the 2D patch MLP architecture. Bolded shows improvement. Italicized shows degradation. “2D5K2FS”
achieves the most consistent improvement across metrics.

Scene Sensor Track Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 SL - 2D5K7FS 10 - 3.06 (0.09) 2.08 (0.03) 94.5 (0.4) 1.86 (0.02)
Office 1 SL - 2D5K7FS 10 - 2.72 (0.27) 1.62 (0.03) 96.4 (0.3) 1.39 (0.06)
Room 2 SL - 2D5K7FS 10 - 2.87 (0.17) 2.45 (0.01) 91.9 (0.2) 2.56 (1.25)

Office 0 SL - 2D5K7FL 10 - 3.08 (0.18) 2.06 (0.03) 94.7 (0.3) 1.82 (0.04)
Office 1 SL - 2D5K7FL 10 - 2.68 (0.20) 1.61 (0.02) 96.6 (0.2) 1.36 (0.03)
Room 2 SL - 2D5K7FL 7 - 2.85 (0.06) 2.37 (0.04) 92.8 (0.4) 2.11 (0.01)

Office 0 SL - 2D5K2FS 10 - 2.87 (0.09) 2.06 (0.04) 94.7 (0.3) 1.79 (0.02)
Office 1 SL - 2D5K2FS 10 - 2.75 (0.21) 1.61 (0.03) 96.5 (0.3) 1.36 (0.04)
Room 2 SL - 2D5K2FS 10 - 2.79 (0.15) 2.39 (0.02) 92.6 (0.3) 2.11 (0.05)

Office 0 SL - 2D5K2FL 10 - 3.03 (0.19) 2.07 (0.02) 94.6 (0.2) 1.80 (0.03)
Office 1 SL - 2D5K2FL 10 - 2.84 (0.19) 1.60 (0.03) 96.7 (0.3) 1.39 (0.04)
Room 2 SL - 2D5K2FL 10 - 2.81 (0.14) 2.40 (0.03) 92.4 (0.4) 2.11 (0.02)

4.5.2 3D Network Ablations

Lastly, we present results using the 3D feature grid-based MLP using appended features as described in
Section 3.4.1. This approach leverages volume rendering of the uncertainty and allows for the accumulation
of uncertainty across frames. The use of local 2D features can additionally provide direct information of the
individual frames and the specific noise associated from the sensor or depth generating method. Within this
subset, we have eight ablation results varying the patch size, the choice of regularizer, and the number of
input features. These results are summarized in Table 4.10.

We find some broad trends within this set of ablations. The use of a small regularizer has a clear
detrimental effect on some of the 3D reconstruction metrics, with obvious degradation in the 2D rendering
metrics and within the completion ratio criteria for Room 2. Room 2 in particular appears challenging
when using a small regularizer. The remaining four methods have similar performance overall, but we note
that trials “3D5K2FL” and “3D1K2FL” appear to have better performance, seeing improvement in 10/12
and 11/12 metrics in total. These two methods only include the depth and the incident angle as appended
features, with one using a 5×5 patch and the other using a 1×1 patch. The inclusion of derivative and
normal information does not appear to provide useful information as the 3D reconstruction metrics and 2D
rendering metrics are not noticeable improved compared to the architectures using only depth and incident
angle information..

Ultimately, we find that the results of using these different architectures to learn an implicit uncertainty
from our constructed uncertainty-aware loss to be marginally effective. We further analyze the performance
differences and the associated statistical significance in Appendix C. We find that we can see statistically
significant gains in performance using our learned uncertainty approaches and that many of degradations we
observe are not statistically significant. Following this analysis, we select the “3D1K2FL” architecture as
our representative 3D architecture of choice.
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Table 4.10: 3D SLAM evaluation metrics comparing the uncertainty-aware losses for the simulated depth
maps in SFN-Replica using the 3D feature grid architecture. Bolded shows improvement. Italicized shows
degradation. “3D1K2FL” achieves the most consistent improvement across metrics. “3D1K2FL” achieves
the most consistent improvement across metrics.

Scene Sensor Track Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 SL - 3D1K7FS 10 - 3.04 (0.13) 2.10 (0.01) 94.5 (0.2) 1.86 (0.03)
Office 1 SL - 3D1K7FS 10 - 2.83 (0.17) 1.62 (0.03) 96.4 (0.3) 1.34 (0.06)
Room 2 SL - 3D1K7FS 9 - 2.84 (0.10) 2.44 (0.03) 92.1 (0.3) 2.16 (0.03)

Office 0 SL - 3D1K7FL 6 - 2.89 (0.16) 2.09 (0.02) 94.4 (0.2) 1.80 (0.02)
Office 1 SL - 3D1K7FL 9 - 2.91 (0.24) 1.61 (0.02) 96.5 (0.2) 1.36 (0.04)
Room 2 SL - 3D1K7FL 9 - 2.73 (0.10) 2.38 (0.03) 92.6 (0.2) 2.08 (0.03)

Office 0 SL - 3D1K2FS 10 - 2.85 (0.14) 2.09 (0.03) 94.6 (0.3) 1.87 (0.03)
Office 1 SL - 3D1K2FS 10 - 2.74 (0.20) 1.63 (0.04) 96.3 (0.3) 1.40 (0.07)
Room 2 SL - 3D1K2FS 7 - 2.94 (0.14) 2.47 (0.03) 91.9 (0.3) 2.17 (0.04)

Office 0 SL - 3D1K2FL 10 - 2.90 (0.14) 2.05 (0.02) 94.8 (0.2) 1.78 (0.02)
Office 1 SL - 3D1K2FL 10 - 2.68 (0.15) 1.59 (0.02) 96.7 (0.2) 1.38 (0.03)
Room 2 SL - 3D1K2FL 8 - 2.77 (0.11) 2.37 (0.03) 92.8 (0.4) 2.08 (0.03)

Office 0 SL - 3D5K7FS 10 - 2.95 (0.18) 2.11 (0.02) 94.4 (0.2) 1.87 (0.02)
Office 1 SL - 3D5K7FS 7 - 2.59 (0.13) 1.61 (0.03) 96.4 (0.3) 1.33 (0.04)
Room 2 SL - 3D5K7FS 10 - 2.74 (0.09) 2.44 (0.02) 92.0 (0.2) 2.17 (0.04)

Office 0 SL - 3D5K7FL 10 - 2.88 (0.19) 2.06 (0.02) 94.7 (0.2) 1.77 (0.02)
Office 1 SL - 3D5K7FL 10 - 2.75 (0.25) 1.60 (0.03) 96.5 (0.2) 1.35 (0.04)
Room 2 SL - 3D5K7FL 10 - 2.74 (0.09) 2.38 (0.02) 92.6 (0.2) 2.10 (0.03)

Office 0 SL - 3D5K2FS 8 - 2.88 (0.15) 2.11 (0.03) 94.5 (0.1) 1.89 (0.03)
Office 1 SL - 3D5K2FS 6 - 2.68 (0.24) 1.62 (0.03) 96.4 (0.3) 1.31 (0.08)
Room 2 SL - 3D5K2FS 5 - 2.76 (0.14) 2.45 (0.02) 91.9 (0.3) 2.18 (0.02)

Office 0 SL - 3D5K2FL 6 - 2.84 (0.18) 2.08 (0.02) 94.6 (0.2) 1.79 (0.02)
Office 1 SL - 3D5K2FL 6 - 2.78 (0.09) 1.61 (0.02) 96.6 (0.2) 1.34 (0.02)
Room 2 SL - 3D5K2FL 6 - 2.67 (0.07) 2.37 (0.04) 92.7 (0.3) 2.10 (0.03)

4.5.3 Ablation Visualization

To better visualize and draw conclusions from the ablations above, we plot the performance metrics against
one another for the different trials, including the original and proxy-based approach. We compare accuracy
and completion, which capture complimentary information in the scene reconstruction. We highlight the
proxy-based approach in green and the original approach in red. These graphs are presented in Figure 4.3.

We can clearly see that our constructed proxy-based loss outperforms all other methods by a significant
margin. Some obvious trends are also visible in these plots—e.g. we can see that the 3D grid approaches
perform better with the larger regularizer (brown) over the weaker regularizer (orange). We can also see
scene dependence on the performance of using our implicitly learned uncertainty. For example in “Office
0,” we typically observe improvement to accuracy, but less method-agnostic effects on completion. In
“Office 1,” we find that most approaches improve on completion, but have inconclusive effects on accuracy.
In ‘Room 2,” we see the clearest clustering by the choice of base architecture and the choice of regularizer.
The methods with larger βmin cluster more closely to the original loss performance without degradation.

We also compare the completion ratio and the depth rendering loss in Figure 4.4. We see a clustering of
results here among different regularizer and between the 2D vs. 3D methods. Typically depth L1 rendering
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Figure 4.3: Comparison plots of accuracy and completion for the original, proxy-based, and learned uncer-
tainty methods. The ellipses in lower opacity represents the standard deviation. Lower left is better.

Figure 4.4: Comparison plots of completion ratio and depth L1 for the original, proxy-based, and learned
uncertainty methods. The ellipses in lower opacity represents the standard deviation. Lower right is better.

is not improved, but we can see improvement in completion ratio for certain methods.
Overall, we find that just from the information provided from a single sensor, we fail to attain the

same kind of performance as seen in our constructed proxy-based loss. Our proxy-based loss sets a loosely
theoretical “upper bound” on the performance gain we may observe from learning uncertainty.

33



CHAPTER 4. EXPERIMENTS AND RESULTS

4.6 Loss Function Ablation

We introduced two modifications in Section 3.3 that ensure we would not encounter the zero uncertainty or
infinite confidence condition. Without these modifications, we find that the code fails from instability due
to divisions by zero.

Among the two modifications, we perform cursory explorations using the NS-Replica dataset with the
SL noise model. We utilize the “2D5K2F” architecture sing 2D feature map information, a patch size of five,
and the two image features: depth and incident angle. For the confidence based network, we set λc = 0.015
as was used in [44]. For the uncertainty architectures, we set the regularizer as βmin = 0.001. We summarize
the results in Table 4.11. We use “2D5K2FC” as the key for the modified approach using confidence.

Table 4.11: 3D Reconstruction evaluation metrics comparing the original loss to the confidence and
uncertainty-aware loss in SFN-Replica. Bolded shows improvement. Italics shows degradation. No sta-
tistically significant differences were found between confidence and uncertainty-modified approaches.

Scene Sensor Track Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 SL - OG 10 - 2.89 (0.20) 9.92 (0.33) 82.0 (0.2) 3.23 (0.06)
Office 1 SL - OG 10 - 3.36 (0.38) 8.51 (0.10) 81.4 (0.3) 11.77 (0.08)
Room 2 SL - OG 10 - 2.46 (0.04) 4.26 (0.07) 87.2 (0.3) 7.69 (0.08)

Office 0 SL - 2D5K2FC 6 - 2.75 (0.17) 9.81 (0.49) 81.9 (0.2) 3.26 (0.14)
Office 1 SL - 2D5K2FC 6 - 3.28 (0.35) 8.58 (0.09) 81.2 (0.3) 11.79 (0.14)
Room 2 SL - 2D5K2FC 6 - 2.43 (0.06) 4.27 (0.09) 87.1 (0.4) 7.70 (0.10)

Office 0 SL - 2D5K2FS 6 - 2.80 (0.29) 9.83 (0.50) 81.9 (0.2) 3.26 (0.13)
Office 1 SL - 2D5K2FS 6 - 3.36 (0.24) 8.56 (0.21) 81.4 (0.4) 11.75 (0.10)
Room 2 SL - 2D5K2FS 6 - 2.44 (0.03) 4.27 (0.03) 87.3 (0.2) 7.62 (0.07)

We fail to find statistically significant differences resulting from these two methods. While the confidence-
based formulating might have desirable properties for bounding the loss function and controlling the uncer-
tainty scaling via λc, we decide to proceed using the uncertainty approach over the confidence approach.
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4.7 Dataset Exploration & Generalization

4.7.1 SFN-Replica

Our ablations have focused on 3D reconstruction and have not explored the SLAM setting for leveraging
uncertainty. We perform experiments using the SFN-Replica dataset with tracking enabled to see if we can
achieve the same performance gain as in our proxy-based approach described previously. We perform exper-
iments using the “2D5K2FS” and “3D1K2FL” architectures, which show some of the better performances
from our architecture ablations. Table 4.12 shows the full comparison of metrics between the original,
proxy-based, and learned methods.

Table 4.12: 3D SLAM evaluation metrics comparing the original, proxy-based, and the uncertainty-aware
loss for the simulated depth maps in SFN-Replica. Bolded shows improvement. More consistent improve-
ment across metrics was achieve using the “2D5K2FS” architecture.

Scene Sensor Track Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 SL OG OG 10 0.26 (0.03) 7.90 (0.56) 7.37 (0.94) 60.4 (3.0) 12.83 (1.38)
Office 1 SL OG OG 10 0.52 (0.24) 12.52 (4.03) 10.26 (1.76) 42.0 (8.8) 16.01 (4.67)
Room 2 SL OG OG 10 0.40 (0.34) 11.90 (7.73) 8.35 (3.10) 56.0 (7.6) 17.06 (11.7)

Office 0 SL Proxy Proxy 10 0.23 (0.04) 7.00 (0.51) 6.40 (0.69) 63.8 (3.1) 10.72 (1.29)
Office 1 SL Proxy Proxy 10 0.33 (0.06) 8.95 (2.51) 8.14 (0.73) 52.5 (5.0) 11.07 (1.52)
Room 2 SL Proxy Proxy 10 0.16 (0.05) 4.00 (0.88) 3.54 (0.67) 81.1 (5.8) 5.03 (1.32)

Office 0 SL 2D5K2FS 10 0.27 (0.03) 7.46 (0.866 7.57 (0.91) 62.3 (2.0) 11.23 (1.28)
Office 1 SL 2D5K2FS 10 0.35 (0.11) 9.35 (3.12) 8.23 (1.46) 51.6 (6.5) 10.92 (3.71)
Room 2 SL 2D5K2FS 10 0.32 (0.06) 8.49 (2.41) 7.72 (2.19) 59.3 (6.8) 13.96 (4.72)

Office 0 SL 3D1K2FL 10 0.25 (0.04) 7.73 (0.90) 6.91 (0.72) 60.2 (4.1) 11.80 (1.50)
Office 1 SL 3D1K2FL 10 0.49 (0.22) 13.46 (5.80) 10.96 (2.37) 40.1 (9.5) 17.42 (9.44)
Room 2 SL 3D1K2FL 10 0.30 (0.08) 10.64 (3.85) 8.07 (3.22) 60.2 (11.5) 14.64 (6.96)

Overall, we find that the “’2D5K2FS” method improves across 13/15 metrics, while “3D1K2FL” im-
proves across 10/15 metrics compared to the original implementation. We also find that of the improvements
using the ”2D5K2FS” method, four meet our threshold for significance and the two methods which degrade
are not found to meet our threshold. No result, improvement or degradation, in the “3D1K2FL” method was
found to have statistical significance.

Overall, we find that the improvement we can observe on the SFN-Replica dataset using our implicitly-
learned uncertainty to be highly encouraging. The results using solely the per-frame information improving
across the majority of metrics is a particularly motivating result. The 3D volume-rendered approach has
the capacity to accumulate uncertainty information across the trajectory, but adds a pose-dependency that
becomes an issue when tracking is enabled.

Furthermore, we find that the 2D frame-only approach is able to achieve more convincing qualitative
results. We showcase these rendered uncertainties in Figure 4.5. In these rendered uncertainties, the 3D
approach returns uncertainty maps that appear uninformative. We especially note the rendered uncertainty
for Office 1, where we see a very homogeneously rendered uncertainty map. In Office 0 and Room 2, the
3D approach captures similar areas of high uncertainty as the ground-truth proxy error, but in a low-fidelity
fashion. The 2D approach, in contrast, exhibits similar distributions with edge and depth dependencies as
the ground-truth proxy error.
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Figure 4.5: Comparison of depth maps, generated uncertainty, and the ground-truth proxy error for the
results with tracking enabled on the SFN-Replica dataset.

4.7.2 NS-Replica

The SFN-Replica dataset provides challenging trajectories that are coarse in nature. Typical streams from
real-world devices tend to have smoother trajectories. Fortunately, the NS-Replica trajectories, originally
developed in iMAP [41], exhibit more realistic trajectories. These datasets, however, do not observe the
entire scene. In NICE-SLAM’s original evaluation, unseen portions of the mesh are culled to isolate the
metrics to only observed portions of the scene. We evaluate without this culling process in place. One could
argue that such an approach tests the methods ability for geometric extrapolation. We test this dataset using
both tracking-enabled and mapping-only conditions. We present the results in Table 4.13.

Overall, the results are less encouraging than the SFN-Replica dataset. We find degradation across
metrics for both the tracking-enabled and mapping-only conditions, and regardless of uncertainty imple-
mentation. We find that in the mapping-only process, we see improvements in one and four metrics in the
“2D5K2FS” and “3D1K2FL” approaches respectively. Overall the impact is quite minor in terms of the
improvement and degradation of the results and many results do not meet our threshold for significance.

Under the mapping-only conditions, one degradation is found to be statistically significant for both the
2D and 3D approach (Room 2 completion ratio). Under the tracking only conditions, the 3D approach sees
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Table 4.13: 3D SLAM evaluation metrics comparing the original, proxy-based, and the uncertainty-aware
loss for the simulated depth maps in NS-Replica. Bolded shows improvement. The improvements and
degradations appear inconclusive on the smoother trajectory and higher resolution NS-Replica depth maps.

Scene Sensor Track Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 SL - OG 9 - 2.89 (0.20) 9.92 (0.33) 82.0 (0.2) 3.23 (0.07)
Office 1 SL - OG 9 - 3.36 (0.38) 8.51 (0.10) 81.4 (0.3) 11.77 (0.08)
Room 2 SL - OG 10 - 2.46 (0.04) 4.26 (0.07) 87.3 (0.3) 7.69 (0.08)

Office 0 SL - 2D5K2FS 7 - 2.91 (0.11) 10.05 (0.06) 81.8 (0.2) 3.27 (0.02)
Office 1 SL - 2D5K2FS 11 - 3.42 (0.23) 8.52 (0.09) 81.4 (0.4) 11.81 (0.13)
Room 2 SL - 2D5K2FS 11 - 2.42 (0.07) 4.32 (0.08) 87.0 (0.2) 7.72 (0.15)

Office 0 SL - 3D1K2FL 14 - 3.01 (0.22) 10.03 (0.07) 81.8 (0.2) 3.23 (0.03)
Office 1 SL - 3D1K2FL 9 - 3.33 (0.44) 8.54 (0.08) 81.4 (0.3) 11.84 (0.09)
Room 2 SL - 3D1K2FL 20 - 2.44 (0.04) 4.31 (0.11) 87.0 (0.4) 7.68 (0.08)

Office 0 SL OG OG 9 0.23 (0.04) 9.12 (2.48) 13.21 (1.26) 47.5 (4.4) 10.75 (1.90)
Office 1 SL OG OG 9 0.09 (0.01) 4.10 (0.32) 9.27 (0.19) 66.9 (1.7) 13.99 (0.46)
Room 2 SL OG OG 10 0.11 (0.01) 4.81 (0.20) 6.33 (0.22) 67.3 (1.4) 11.60 (0.38)

Office 0 SL 2D5K2FS 2D5K2FS 10 0.22 (0.03) 8.41 (2.18) 13.41 (1.54) 47.4 (4.8) 10.69 (1.63)
Office 1 SL 2D5K2FS 2D5K2FS 10 0.10 (0.01) 4.42 (0.19) 9.53 (0.24) 64.7 (1.3) 14.28 (0.34)
Room 2 SL 2D5K2FS 2D5K2FS 11 0.11 (0.01) 4.28 (0.19) 5.77 (0.23) 70.1 (1.4) 10.80 (0.36)

Office 0 SL 3D1K2FL 3D1K2FL 10 0.21 (0.02) 7.65 (1.79) 12.51 (1.01) 50.0 (4.6) 9.65 (1.33)
Office 1 SL 3D1K2FL 3D1K2FL 10 0.10 (0.01) 4.43 (0.36) 9.26 (0.21) 66.4 (1.8) 14.11 (0.34)
Room 2 SL 3D1K2FL 3D1K2FL 8 0.11 (0.01) 4.72 (0.16) 6.14 (0.17) 67.7 (2.1) 11.56 (0.51)

one statistically significant degradation (Office 1 accuracy). For the 2D approach, there are four statistically
significant degradations (Office 1 ATE, accuracy, completion, and completion ratio) and four statistically
significant improvements (Room 2 accuracy, completion, completion ratio, and depth L1). We present
qualitative results for the mapping-only process in Figure 4.6.

We see similar trends regarding the rendering of uncertainty compared to the SFN-Replica dataset. The
2D approach using only the active frame information better reflects what we would expect from sources of
measurement uncertainty, capturing depth and edge effects. The 3D approach, in contrast, looks significantly
less informative and much more uniform.

The NS-Replica dataset has much smoother trajectories and a high image resolution with the same
horizontal field-of-view. These factors could explain why we see a limited effect when using our uncertainty-
aware approach. With a high resolution, edges are less likely to be directly sampled. When these points of
high error are sampled, they will be closer to the edge itself due to the higher resolution used in the capture
of this dataset. These points that may otherwise skew the tracking or mapping are less likely to be sampled,
and the trajectories themselves are much easier to track.

4.7.3 TUM RGB-D

This work has focused so far on synthetic datasets for evaluation. We present results from the TUM RGB-D
dataset to show the effect of our uncertainty extension on a real-world dataset. As the TUM-RGBD dataset
is a real world dataset, we cannot generate 3D reconstruction metrics or the 2D depth rendering metrics
since we have no access to ground-truth data. We elect to sue the 2D approach to render uncertainty due
to its better qualitative performance. We can only evaluate using the ATE metric against the trajectory. For
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Figure 4.6: Comparison of depth maps, generated uncertainty, and the ground-truth proxy error for the
results without tracking on the NS-Replica dataset.

this evaluation of ATE, we revert to typical definition of the ATE metric where we take the error after least-
square minimization between the provided trajectory and our tracked trajectory. We present the visualized
results of the learned uncertainty and the tracking error plots in Figure 4.7.
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Figure 4.7: Visualization of depth maps, generated uncertainty, and the ATE tracking error results on the
TUM-RGBD dataset.
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The generated uncertainty is also reflective of our expectations, with clear edge and depth dependency.
The ability to generate reasonable uncertainties from a real world dataset is encouraging as it signals that
the work performed so far may transfer from simulation to real world applications. We also find that the
trajectory tracking for both of the “Desk” scenes is generally successful. We summarize the ATE metric in
Table 4.14.

Table 4.14: 3D Reconstruction evaluation metrics comparing the original loss to the uncertainty-aware loss
for the TUM-RGBD dataset. Bolded shows improvement. Italics shows degradation.

Scene Sensor Track Loss Map Loss N ATE [m]

Freiburg 1 Desk 1 SL OG OG 8 0.0736 (0.0084)
Freiburg 1 Desk 2 SL OG OG 8 0.3137 (0.2854)

Freiburg 1 Desk 1 SL 2D5K2FS 2D5K2FS 6 0.0745 (0.0067)
Freiburg 1 Desk 2 SL 2D5K2FS 2D5K2FS 10 0.2864 (0.3877)

With the uncertainty-aware, we find that the tracking performance is not substantially changed between
using the original or the uncertainty-aware loss. We find no statistically significant difference between using
the original or uncertainty-aware loss. Throughout all of the experiments, we find limited effectiveness of
improving tracking results using the uncertainty-aware loss under the single-sensor environment. However,
the extraction of reasonable uncertainty maps encourages us to further investigate the ability to fuse multiple
sensors for improving reconstruction, tracking, and rendering.
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4.8 Aligned Two-Sensor Extension

We perform experiments fusing multiple sensor observations weighted by learned uncertainty in our nerual
implicit framework. We utilize the “2D5K2FS” architecture described in the previous sections as the 2D
architecture has a lighter memory and computational footprint compared to the 3D grid approaches. We
present in Table 4.15 the metrics using the original NICE-SLAM implementation for the SL model, SGM,
and PSMNet generated depth maps, and their combinations. When performing meshing, we utilize the depth
map source that attains the better reconstruction metrics2 for determining meshing bounds to provide a fair
comparison.

Table 4.15: 3D SLAM evaluation metrics comparing multi-sensor uncertainty-aware loss for the simulated
depth maps in SFN-Replica. Bolded shows improvement. Italicized shows degradation. The fusion of dif-
ferent sensor sources generally improves 3D reconstruction metrics and more significantly improves depth
rendering.

Scene Sensor Tr. Loss Map Loss N ATE [m] Acc. [cm] Comp. [cm] C. Ratio [%] 2D L1 [cm]

Office 0 SL - OG 15 - 3.03 (0.17) 2.08 (0.02) 94.5 (0.2) 1.80 (0.03)
Office 1 SL - OG 15 - 2.71 (0.23) 1.66 (0.06) 96.1 (0.4) 1.37 (0.03)
Room 2 SL - OG 15 - 2.80 (0.09) 2.39 (0.02) 92.6 (0.3) 2.11 (0.02)

Office 0 SGM - OG 15 - 13.19 (0.83) 2.56 (0.03) 91.1 (0.3) 2.39 (0.04)
Office 1 SGM - OG 15 - 44.19 (3.09) 3.00 (0.04) 88.0 (0.3) 3.93 (0.11)
Room 2 SGM - OG 15 - 14.03 (1.72) 2.80 (0.05) 89.6 (0.5) 3.03 (0.05)

Office 0 PSM - OG 10 - 3.27 (0.14) 2.57 (0.03) 89.9 (0.2) 2.07 (0.03)
Office 1 PSM - OG 10 - 4.14 (0.32) 2.58 (0.02) 87.9 (0.3) 3.29 (0.39)
Room 2 PSM - OG 10 - 3.95 (0.14) 2.66 (0.03) 89.3 (0.2) 3.29 (0.39)

Office 0 SL/SGM - 2D5K2FS 12 - 2.93 (0.18) 2.04 (0.03) 94.3 (0.3) 1.74 (0.02)
Office 1 SL/SGM - 2D5K2FS 12 - 2.78 (0.26) 1.68 (0.03) 95.8 (0.2) 1.38 (0.06)
Room 2 SL/SGM - 2D5K2FS 12 - 2.87 (0.12) 2.38 (0.02) 92.8 (0.3) 2.06 (0.05)

Office 0 SL/PSM - 2D5K2FS 10 - 2.67 (0.13) 2.10 (0.03) 93.0 (0.2) 1.65 (0.03)
Office 1 SL/PSM - 2D5K2FS 10 - 2.81 (0.17) 1.80 (0.04) 94.2 (0.4) 1.35 (0.08)
Room 2 SL/PSM - 2D5K2FS 10 - 2.71 (0.15) 2.21 (0.04) 93.6 (0.5) 1.84 (0.04)

Office 0 PSM/SGM - 2D5K2FS 10 - 3.54 (0.20) 2.39 (0.03) 91.3 (0.2) 1.90 (0.03)
Office 1 PSM/SGM - 2D5K2FS 10 - 3.76 (0.23) 2.29 (0.05) 89.7 (0.5) 2.18 (0.06)
Room 2 PSM/SGM - 2D5K2FS 8 - 3.72 (0.17) 2.46 (0.04) 91.3 (0.3) 2.13 (0.03)

We find significant improvement across various metrics when using the two-sensor weighted loss func-
tion. At worst, metrics have marginally degraded compared to their best performing constituent sensor. Of
the 36 metrics, we find that 24/36 metrics have improved.

While we do not see all-around improvement across metrics, we do find encouraging signs for this
cursory exploration into sensor fusion with our neural implicit framework. One significant observed im-
provement is in the depth rendering, or 2D L1 metric, where we can see significant improvement compared
to the baseline results in all scenes except for Office 1 when fusing the SL noise model and the SGM stereo
method.

When fusing the SL model and SGM method, we find the performance mirrors the SL model quite
closely in spite of the SGM method’s worse performance overall. This is encouraging as the model learns
to rely on the more trustworthy sensor. The performance degradations observed are also minor and are quite

2SL for SL/PSMNet and SL/SGM; PSMNet for PSMNet/SGM
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similar to the base SL model results. The combination of the SL model and the PSMNet rendering also
achieves the best results for 2D rendering, surpassing performance from their single-sensor counterparts.
When we fuse both stereo methods, PSMNet and SGM, we find positive results across nearly all metrics.
As both SGM and PSMNet have more similar performance in terms of completion, completion ratio, and
depth rendering, the potential for improvement may be easier. When fusing with the SL model, the SL
model exhibits better performance and limit the potential gains when fusing poorer performing sensors. We
again show the comparison between the original method and the two-senor fused approaches visually in
Figure 4.8.

Figure 4.8: Comparison plots between the original and sensor-fused approaches. Lower opacity ellipses
show the standard deviation of the metrics. (Top) accuracy v. completion, lower left is better. SGM result
is cropped from view due poor results. (Bottom) L1 Rendering vs. completion ratio, lower right is better.

Visually, we see that the combination of PSMNet and SGM outperform their constituent results quite
clearly. The results that fuse the SL model also tend to be clustered together, in part due to being dominated
by a more trustworthy sensor. Despite this, we see relatively significant performance gains when we fuse the
SL model and PSMNet depth maps within our uncertainty-aware extension of NICE-SLAM. Given more
similarly balanced noise models, one might expect the potential performance gains to mirror what we see in
the fusion of PSMNet and SGM, where there is a clear performance improvement across 3D reconstruction
and 2D rendering.

In Figure 4.9, we compare the learned uncertainty to the true errors during the fusion of SGM and SL
depth maps. We can see that the learned uncertainty for a fusion of SGM and SL depth maps appears
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more reflective of the true errors, or proxy errors, which are calculated as the difference between the noisy
and ground-truth depth maps. We note that these uncertainties are implicitly learned in an online fashion,
without pre-training or pre-determined priors.

(a) Learned SL (b) True SL Error (c) Learned SGM (d) True SGM Error

Figure 4.9: Rendered uncertainty comparison of the SL-SGM fusion for scene Room 2.

Visually, we see correlation between areas of high uncertainty in the learned and true uncertainty. The
corner of the room is an area of high uncertainty for the SL model, reflecting the true SL error. Band effects
can be seen in the SGM approach that are captured in the learned SGM uncertainty.
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Discussion

5.1 Analysis of Results

In this work, we explore the construction of an uncertainty-aware neural implicit approach for 3D reconstruc-
tion and SLAM. We have presented detailed ablations using a single-sensor approach and cursory results
from a multi-sensor implementation. Qualitatively, we also find informative uncertainty maps that reflect
the true error in our noisy depth map models. This work achieves generally positive gains across metrics
and was able to implicitly learn uncertainty of a given depth map in an online fashion. In contrast to other
methods—e.g. SenFuNet [35] or RoutedFusion [44]—which pre-learn uncertainty through supervision with
ground-truth depth maps, our approach is able to generate uncertainty maps without access to ground-truth.

5.1.1 Single-Sensor Approach

Within the single sensor-sensing environment, we showcase that several approaches toward learning uncer-
tainty are viable. In particular, we use both an approach that only takes in information from the current
image frame and an approach that leverages the structure of NICE-SLAM’s 3D grid of features. Both
of these methods, given the right feature inputs and parameters, are able to achieve statistical significant
improvements on our evaluation metrics without any supervision over those metrics. Overall, the improve-
ments achieved over the original implementation are small, but significant. This is not surprising, however,
as it follows the work of Kendall and Gal [19], where they found small consistent improvements to computer
vision tasks when incorporating uncertainty into their neural network architecture.

We find that in 3D reconstruction without tracking, the 3D grid of features using a larger regularizer
appears to achieve more statistically significant improvements (see Appendix C). Such an approach accu-
mulates observations from past frames in a continuous representation. One such interpretation of accumu-
lating uncertainty over image frames can be seen loosely as informing a prior on the uncertainty rendering.
Such an approach is necessarily camera pose dependent, however, and presents additional challenges with
uncertainty coupling when tracking in enabled.

Learning uncertainty from a single source shows limited improvements and overall utility. But showcas-
ing the possibility of learning uncertainty from a single source opens up many future directions for sensor
fusion and learned weighting of different sensors exhibiting different noise distributions. Neural implicit
scene representation is a still immature field and has yet to explore the full spectrum of advances seen by
more standard representations like meshes and voxels. By capturing uncertainty with our method, we ex-
tend the flexibility of the NICE-SLAM framework and provide new information to leverage and further
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close these gaps with classical methods by scaling depth observations by their uncertainty when generating
the scene representation.

5.1.2 Two-Sensor Extension

We showcase that we can learn reasonable representations of uncertainty in an online fashion and without
supervision of ground-truth depths to weight the reliability of two sensors. In particular, we highlight the
consistent performance gain in rendering. Volume rendering is the backbone of NICE-SLAM and has
beneficial evaluation properties when compared with the 3D metrics. In particular, the 2D rendering provides
a direct comparison relying solely on the camera pose and makes no assumptions about the bounds of the
scene. With the 3D metrics, the use of an input-dependent convex hull during mesh generation presents
problems if there are large spurious errors in the 2D depth maps. For example, the SGM method has
large spurious depth errors that result in an enlarged convex hull that leads to its low performing metrics.
Further analysis can leverage the ground-truth depths to provide a consistent bounding hulls for 3D metric
comparisons.

We find that our uncertainty-aware extension is capable of fusing two aligned depth maps and approach
or exceed the performance of using individual sensors. Given further extensions to this approach—e.g.
outlier rejection, colour weighting, asynchronous sensors—, we can expect to achieve better performance
and/or greater flexibility.
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5.2 Assumptions

We will dedicate some effort to address potential concerns regarding the construction of our loss function.
In particular, we aim to address concerns regarding the independence of each sensor observation and of the
specific conditions for separating out uncertainty into the aleatoric and epistemic categories.

5.2.1 Loss Function Assumptions

We make several assumptions when constructing our loss function in Section 3.2. These assumptions involve
the error distribution and the pixel-wise independence. For the first point, we have assumed a symmetric
Laplacian distribution in our assumption—i.e. that the probability of underestimating the depth and over-
estimating the depth is equal. Given that vision is occlusion-aware and scene detail is depth-dependent for
vision sensors, we make a strong assumption on the error symmetry of the error. We additionally assume a
particular steepness in the distribution fall-off when we assume a Laplacian over a Gaussian or other distri-
bution. For the second point, we assume that depth measurements are I.I.D. for each given pixel. Given that
time-of-flight sensors experience multi-path interference and structured-light or stereo-based methods rely
on neighbouring points for detail extraction, we make a very strong assumption—and one that is certainly
not fully accurate—in the independence of each pixel.

Nevertheless, we believe these are reasonable assumptions for a number of factors. In many modelling
works, Gaussian or Laplacian noise is commonly employed to great effect, with the ability to generalize and
perform well even when they differ from real-world distributions [6]. We also show later in Section 5.3.2
minor imbalances in the error distributions, but note that the distributions are close to symmetric. For the
independence of pixel sampling, we make two arguments. First, we argue that the depth measurements are
most likely affected by the local proximity of, or neighbouring, pixels. This means independence is likely
for one pixel compared to the majority of other pixels due to the expectation that errors are only locally
situated. Second, NICE-SLAM utilizes a sparse sampling methodology that results in a sparse selection of
rays in the scene. This means that neighbouring rays are rarely selected, also improving the likelihood of
independence if errors are, as we suspect, only locally correlated.

As such, we believe the underlying I.I.D. and distribution assumptions used in constructing our loss
function are justified and not so distant from reasonable real-world conditions.

5.2.2 Uncertainty Assumptions

In Section 3.2, we present two major sources of uncertainty: aleatoric and epistemic. In this work we have
focused on the aleatoric uncertainty, or uncertainty in the observation. However, there are many ways to
classify uncertainty and uncertainties can be tightly coupled. We make an assumption that we can generate
an unbiased depth rendering that allows us to retrieve the aleatoric uncertainty implicitly from our loss
function. In practice, the depth rendering is model-dependent and, more specifically, dependent on the point
sampling strategy. The default sampling strategy in NICE-SLAM samples points more densely around
the depth measurement. For the majority of pixels, we expect that the depth measurement is close to the
true surface. However at discontinuities and at spurious points, we may see large differences between the
depth measurement and the true surface. In such cases, the depth rendering is directly affected by the
measurement error. We assume that the decision to sample points more densely around the measurement
will appropriately capture the distribution of possible depth readings. Edge locations might have, by nature,
bimodal distributions for possible depth readings. Edges are relatively rare in depth maps, however, and we
would expect that the majority of observations would not be affected by the pixel sampling strategy.
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While we motivate our work in learning the aleatoric uncertainty implicitly, we must acknowledge that
uncertainty is a complicated task to unravel. Drawing discrete boundaries between different sources of
uncertainty can provide useful theoretical framing, but may not hold fully in practice.
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5.3 Challenges in Learning Uncertainty

5.3.1 Sparse Pixel Sampling

NS-Replica has 1200 × 680 resolution which contains 816,000 pixels. With 5 keyframes, we have 4,080,000
pixels to sample from. Within NS-Replica, we sample 5000 pixels for mapping, or 0.12% of all available
pixels. SFN-Replica has 512 × 512 resolution which contains 262,144 pixels. With 5 keyframes, we have
1,310,720 pixels to sample from. Within SFN-Replica, we sample 5000 pixels, or 0.38% of all available
pixels. As a result of this pixel sampling strategy, we utilize only a very small selection of the total incoming
data at each iteration of a mapping step and will rarely sample adjacent pixels for acquiring local context in
the depth estimation.

Even ensuring that 5000 unique pixels are selected at every iteration in the 60 iteration mapping process,
only a partial sampling of the entire frames is achieved at each mapping step. With this limited subset of
pixels used in defining the scene, the model may overfit to the sparse set of observation provided. Learning
the noise distribution might necessitate greater use of the incoming sensor information to prevent overfitting
of the scene. On the other hand, the use of large voxel blocks at (16 cm) provides some regularizing effect
on the scene representation and may mitigate some concern over the overfitting to the sparse points.

Additionally for each depth estimation, we only have a single observation. That is, for each pixel in the
depth map we render, only a single pixel observation exists. To evaluate uncertainty using classical statistics,
multiple observations is typically required to quantify uncertainty, especially if we are working under the
assumption that each pixel is I.I.D. As such, we would expect the task of determining uncertainty to be fairly
challenging within the NICE-SLAM framework.

5.3.2 Poorly-balanced Error Distributions from Pixel Selection

One concern when trying to train for a network that learns uncertainty is the uneven distribution of low
and high error pixels. Even within a noisy depth map, most pixels are relatively accurate, providing an
imbalanced dataset. This imbalance can lead to the network overfitting to the low uncertainty regions and
failing to learn the high uncertainty representations. We investigate the error distribution within the SFN-
Replica dataset and find that the errors are highly concentrated around the zero-error region, shown in
Figure 5.1.

Figure 5.1: Pixel-wise error distribution of noisy depth maps presented in log-scale.

We note that the distribution falls from 106 to 103 number of samples when we look at pixels with an
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error of 0 m and with an error of 0.4 m. When we look at the CDF of the error distributions, we find that
> 90% of pixels in the SL noisy depth maps and > 80% of pixels in the SGM stereo depth maps exhibit
less than 5 cm of error. We present the CDF of these two distribution is Figure 5.2.

Figure 5.2: CDF of SFN-Replica error distribution.

This sampling issue of low and high error pixels—i.e. the dataset imbalance between high and low
uncertainty “classes”—was also discussed in the work by Bae et al. [2] in investigating surface normal
uncertainty. They formulate a refinement step that uses an MLP that refines a set of pixel-wise input features
that had previously been used for a coarse prediction. To train these MLP refinement modules, the authors
employ uncertainty-guided sampling which selects from the highest uncertainty pixels and appends these
samples to uniformly sampled pixels. This approach prevents bias in training towards large planar surfaces
and improves the surface normal reconstruction.

Such an approach to learn the uncertainty in a more balanced fashion would be beneficial. However,
we aim to learn uncertainty in an online manner and without direct supervision from the GT. To incorporate
balanced training would require changes in our underlying assumptions and significant reworking of the
training pipeline and architecture. As an avenue of exploration, such an approach is promising and we hope
that we can use this insight to inform future changes of our architecture.
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CHAPTER 5. DISCUSSION

5.4 Future Work

In the design of NICE-SLAM or any SLAM pipeline, there are many practical considerations that can impact
overall performance. There are many avenues for the future direction of this work, including the extension
of our framework to incorporate different sensor systems.

5.4.1 Extension to Colour Sensors

In this work, we isolate our investigation to looking at just depth maps in a single-sensor or two-sensor
environment. A colour or RGB image provides additional information and can be unified within our existing
framework. Making the same assumptions as described in Section 3.2, we can formulate an equivalent
probabilistic function describing each pixel observation. Assuming each RGB pixel is I.I.D., we can describe
the probability of the current observations as shown in Eq. (5.1).

P (C1, ..., CM ) = P (C1)...P (CM )

=

M∏

m=1

P (Cm)

=

M∏

m=1

1

2βC,m
e
−

|Cm−µC,m|
βC,m (5.1)

where Ci is the RGB values of pixel i. Combining with the original depth maps, we can construct a joint
probability distribution using both depth maps and RGB images. We present this formulation in Eq. (5.2).

P (D1, ..., DM , C1, ..., CM ) = P (D1)...P (DM )× P (C1)...P (CM )

=
M∏

m=1

P (Dm)P (Cm)

=
M∏

m=1

1

2βD,m
e
−

|Dm−µD,m|
βD,m × 1

2βC,m
e
−

|Cm−µC,m|
βC,m (5.2)

Converting the above formulation into a loss function, we can utilize the colour rendering methods
originally used in NICE-SLAM. We do, however, also append an additional network to learn the colour
uncertainty in the same manner as the depth uncertainty described in this work. Consequently, we can
construct the loss function as show in Eq. (5.3).

L =

M∑

m=1

(
|Dm − D̂m|

β̂D,m

+ log(β̂D,m) +
|Cm − Ĉm|
β̂C,m

+ log(β̂C,m)

)
(5.3)

where D̂, Ĉ, and β̂ are parameterized using the deep learning architectures described in Section 3.4. This
approach has the capacity to learn the weighting function between sensor observations, independently of
hand-tuning results. In the original NICE-SLAM, the implementation selects specific values to weight the
depth and colour loss, which operate using different scales. Automatically learning an effective scaling
between the two would be highly beneficial in online SLAM environments.
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CHAPTER 5. DISCUSSION

5.4.2 Extension to Multiple Non-aligned Sensors

The previous section describes how we could combine the RGB and depth sensors of a unified RGBD sys-
tem. Beyond such a system, it is easy to extend the approach from aligned sensors to rigidly offset sensors,
or to even use different data inputs. For example, a stereo pair of depth cameras could be employed and
sampled independently, generating an equivalent formulation from the single sensor sampled case. Alter-
natively, if we are provided a sparse point cloud, we could sample points and regress depth in the same
fashion as our dense depth sensors we have investigated so far, allowing for scene interpolation and depth
completion.

Given two synchronized and rigidly offset sensors, we can sample a set of observations a ∈ {1, ..., A}
from depth sensor A and a set of observations b ∈ {1, ..., B} from depth sensor B. The corresponding
generalized loss function could be described as shown in Eq. (5.4).

L =
A∑

a=1

(
|Da − D̂a|
β̂D,a

+ log(β̂D,a)

)
+

B∑

b=1

(
|Db − D̂b|
β̂D,b

+ log(β̂D,b)

)
(5.4)

Extensions to non-synchronized and independently-moving sensors or agents are also possible, but
should be more challenging due to the requirements for accurate tracking and balancing scene updates.
In a synchronized setting, the different sensors could have a complimentary effect that improves sensor fu-
sion during each update step. Asynchrocity requires some degree of input batching to allow for joint scene
optimization. Ultimately, we believe that the current implementation of our uncertainty-aware module is
flexible and allows us to explore the potential in multi-sensor and multi-agent situations in a motivated
and self-balancing manner. These concepts we introduce here are not explored in this work, but are triv-
ial conceptual extensions based on the flexibility of how we motivate our approach in implicitly learning
uncertainty in an online fashion.

50



Chapter 6

Conclusion

In this work, we have shown that we can learn the uncertainty of a depth sensor in an online fashion with-
out supervision from the ground-truth mesh or depth maps. We introduce a theoretical framework for how
to model individual pixel observations in a probabilistic manner given strong assumptions about indepen-
dence. From this framework, we construct a motivated objective function to learn uncertainty implicitly.
This use of uncertainty within a single-sensor environment can improve 3D reconstruction and localization
within the neural implicit framework of NICE-SLAM. We find evidence that our approach of using 2D fea-
ture maps and volume rendering through a persistent 3D grid of features is capable of improving tracking,
reconstruction, and rendering metrics with statistical significance.

Furthermore, we find that this work naturally extends to multi-sensor systems. We showed that we
can fuse the depth information from two aligned sensors to improve the rendering results and some 3D
reconstruction metrics. We also find that the performance approaches or exceeds the performance of the
more reliable sensor, showing promise in further work to refine the fusion of independent sensors in 3D
reconstruction.

We believe this works furthers our understanding of how to leverage uncertainty to improve the results
within neural implicit representations. This work naturally leads to possible extension involving the fusion of
different sensing modalities, such as RGB images, and from other sensor types, such as lidar. Additionally,
this work provides the groundwork for extensions into non-aligned and asynchronous fusion of multiple
sensors which have applications in multi-agent and multi-sensor robotics.
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Appendix A

Environment & Code Repository

The codebase used for this project can be found here: https://gitlab.ethz.ch/kevita/uncertainty-nice

A.1 System Description

This work was primarily conducted on the CVL SLURM cluster for students. The deep learning training of
NICE-SLAM and our associated extension was performed using titan x, titan xp, or geforce gtx titan x

GPUs.
To run the evaluation scripts on the cluster, headless rendering in Open3D is required to be built from its

source code. This includes headless support in OS Mesa. We provide instructions in the repository on how
to set-up the evaluation scripts to work on the displayless clusters.

A.2 Code Repository

This work builds off the NICE-SLAM repository (github.com/cvg/nice-slam) with modification and im-
provements. The NICE-SLAM code-base is a challenging code-base to work with due to its non-deterministic
outputs that require statistical methods for proper evaluation. Additionally, there are potential improvements
to the code’s modularity and extensibility that we hope to address.

The repository provides an installation guide and environment configuration file in our working repos-
itory for our NICE-SLAM extension, managed using Conda. A summary of key libraries and their active
version can be found below:

• Python = 3.7.11

• pytorch = 1.11.0

• opencv = 4.5.5.64

• numpy = 1.21.5

Within the repository, we provide the modified NICE-SLAM code in the nice-slam/ folder. We also
provide various scripts or data visualization and data preparation in the src/prepare dataset/ folder,
such as the code for inducing noise into depth maps. The src/habitat/ folder contains the files necessary
to render a sequence of stereo depth maps and stereo images based on trajectories provided in either the
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APPENDIX A. ENVIRONMENT & CODE REPOSITORY

NICE-SLAM Replica (NS-Replica) or SenFuNet Replica (SFN-Replica) formats. The notebooks/ folder
contains some working Jupyter notebooks used for prototyping, data analysis, and data visualization. The
docs/ folder contains instructions on how to run and set-up the various auxiliary scripts provided.

A.3 Stochasticity & Non-determinism

The default implementation of NICE-SLAM is non-deterministic. To aid in development, we investigated
different parameters in an effort to achieve repeatable results from the base NICE-SLAM implementation.

According to Pham et al. [30], there is significant variance when re-training deep learning models.
These are categorized into algorithmic sources or implementation sources. A list of these factors can be
found below:

• Algorithmic –non-deterministic DL layers, weight initialization, data augmentation, batch ordering

• Implementation –parallel processes, auto-selection of primitive operations, scheduling floating-point
precision

In an effort to achieve deterministic outputs, we initialize the random number generator (RNG) seed in
the pytorch, numpy, and random libraries. This leads to the initial forward passes to generate the same
results, except for minor differences due to parallel floating point operations. This alone was insufficient to
achieve deterministic outputs.

We next attempt to force pytorch to select deterministic algorithms for computation by setting the
use deterministic algorithms() internal flag to True. Unfortunately, the backward pass of the
grid sample() function is non-deterministic and has no deterministic implementation in pytorch. This
function is used for interpolating from the voxel grid of features in the decoder. We note that a determin-
istic implementation of backwards pass through trilinear interpolation should be possible. As such, our
efforts shifted from ensuring deterministic outputs, to controlling our analysis process to accommodate the
stochasticity of the output.

A first strategy to address the variance in output is simple aggregate statistics across a number of runs.
We are particularly interested in the mean result and the accompanied standard deviation of the repeated
runs. In our experiments, we find larger variances in results using the original implementation of NICE-
SLAM, especially in the case where tracking is active, as we evaluate on noise-induced depth maps. Using
the original tracking loss, we can find standard deviations greater than ±50% of the metric mean result due
to tracking failures.

A second strategy to determine the significance of our work is through a unpaired t-tests that tells us the
likelihood that both results exhibit the same mean. Such tests give us some insight into the effectiveness
of various implemented changes within the NICE-SLAM framework. We present the evaluation method in
more detail in Chapter 4.
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Appendix B

Weighting Bias in Volume Rendering

As pointed out in NeuS [43], the weighting function employed in volume rendering is inherently biased.
Despite this, an occupancy model that exhibits sharp transitions from free space to occupied space can
mitigate the effects of bias.

B.1 Depth Rendering

We show that, given an accurate uncertainty model, we can reconstruct the estimated uncertainty at the
specific estimated depth. We show this result by comparing a few example cases where we simulate the
alpha-composition process using:

1. An occupancy oracle based on a logistic curve.

2. A depth-dependent uncertainty function based on a polynomial (squared) function.

First, we showcase an example where we utilize equally-spaced point sampling on a gradual, or more
uncertain, occupancy boundary. Figure B.1 shows that, due to the shallowness of the surface boundary, the
extraction of the surface is biased. The red dotted line De(p) shows the rendered depth, the blue line O(x)
is the occupancy oracle, and the green markers W (x) are the associated weighting values. Ns represents the
number of points sampled.

Figure B.1: Depth determination from equally-spaced point sampling in alpha-composition over a less cer-
tain surface boundary.
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NICE-SLAM optimizes for the scene geometry and naturally minimizes this model boundary uncer-
tainty over time. Figure B.2 shows how a higher certainty model boundary leads to more accurate retrieval
of the surface boundary.

Figure B.2: Depth determination from equally-spaced point sampling in alpha-composition over a more
certain surface boundary.

Another addition that NICE-SLAM uses is informed sampling where Ni points are sampled near the
depth measurement. In the previous example, we see that the sharp scene bounds leads to better sur-
face identification. The inclusion of informed sampling—that is equally-spaced sampling in the range of
[0.95Dm, 1.05Dm] where Dm is the measured depth—allows for the surface bound to be better identified.
Figure B.3 shows how informed sampling can further reine the depth retrieval.

Figure B.3: Depth determination from equally-spaced point sampling in alpha-composition over a more
certain surface boundary with informed sampling.

B.2 Uncertainty Rendering

We can also show that an alpha-composited uncertainty is able to retrieve results close to the oracle uncer-
tainty at the estimated depth. Fig. B.4 shows this result where we can compare the true depth D and true
uncertainty S(D) to the estimated depth De and volume rendered uncertainty Se.
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Figure B.4: Uncertainty and depth estimation from alpha composition.
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Appendix C

Architecture Ablation Significance

We perform a cursory analysis on the total number of improved metrics in Sections 4.5.1 and 4.5.2, showing
the general trends of improvement. We now present the detailed results of the significance analysis of the
various ablations. The summary may be found in Table C.1.

Table C.1: Statistical significance of ablation differences based on Welch’s t-test. Italicized results are not
statistically significant (P > 0.05). Grayed results degraded using our uncertainty-aware loss.

2D Features 3D Grid
Trial Scene P Acc. P Comp. P Ratio P 2D P Acc. P Comp. P Ratio P 2D

Office 0 65.8% ↑ 2.7% ↑ 6.8% ↑ 36.9% ↑ 57.0% ↓ 1.4% ↓ 82.3% ↑ 0.0% ↓
1K7FS Office 1 91.2% ↓ 62.4% ↑ 46.7% ↑ 41.1% ↑ 24.2% ↓ 12.1% ↑ 11.1% ↑ 24.0% ↑

Room 2 33.6% ↓ 4.1% ↓ 31.2% ↓ 22.4% ↓ 73.0% ↓ 0.0% ↓ 1.9% ↓ 0.7% ↓

Office 0 20.1% ↑ 1.2% ↓ 12.9% ↓ 0.0% ↓ 1.8% ↑ 43.4% ↓ 66.7% ↑ 0.0% ↓
1K2FS Office 1 21.0% ↑ 13.3% ↑ 13.9% ↑ 33.1% ↓ 97.0% ↓ 39.8% ↑ 64.5% ↑ 20.3% ↓

Room 2 11.3% ↓ 0.0% ↓ 0.0% ↓ 0.0% ↓ 10.1% ↓ 0.0% ↓ 0.1% ↓ 1.1% ↓

Office 0 6.7% ↓ 71.1% ↑ 15.9% ↑ 7.1% ↓ 16.2% ↑ 46.3% ↓ 45.8% ↓ 81.5% ↓
1K7FL Office 1 51.3% ↓ 61.8% ↑ 89.0% ↑ 42.3% ↑ 9.8% ↓ 2.5% ↑ 2.2% ↑ 62.3% ↑

Room 2 62.3% ↓ 94.4% ↓ 81.7% ↓ 61.9% ↓ 3.8% ↑ 60.0% ↑ 52.8% ↑ 1.2% ↑

Office 0 0.5% ↑ 0.% ↑ 0.2% ↑ 78.0% ↑ 9.2% ↑ 0.% ↑ 0.1% ↑ 2.3% ↑
1K2FL Office 1 39.5% ↓ 5.1% ↑ 3.4% ↑ 35.7% ↓ 43.7% ↑ 0.4% ↑ 0.2% ↑ 41.1% ↓

Room 2 16.3% ↑ 47.9% ↑ 37.2% ↑ 20.2% ↑ 23.6% ↑ 24.6% ↑ 13.5% ↑ 1.7% ↑

Office 0 24.9% ↓ 61.4% ↓ 78.4% ↑ 0.0% ↓ 40.6% ↓ 0.3% ↓ 10.0% ↓ 0.0% ↓
5K7FS Office 1 87.5% ↓ 19.2% ↑ 12.7% ↑ 34.0% ↓ 6.3% ↑ 6.8% ↑ 41.2% ↑ 5.2% ↑

Room 2 18.3% ↓ 0.0% ↓ 0.0% ↓ 28.7% ↓ 3.9% ↑ 0.0% ↓ 0.0% ↓ 0.4% ↓

Office 0 0.7% ↑ 26.7% ↑ 10.2% ↑ 17.1% ↑ 11.7% ↑ 0.9% ↓ 38.9% ↑ 1.9% ↓
5K2FS Office 1 89.1% ↓ 3.6% ↑ 3.7% ↑ 57.9% ↑ 67.9% ↑ 14.1% ↑ 18.1% ↑ 8.3% ↑

Room 2 50.9% ↑ 63.8% ↓ 55.6% ↑ 88.8% ↑ 93.2% ↑ 0.0% ↓ 0.1% ↓ 0.1% ↓

Office 0 29.6% ↓ 10.8% ↑ 14.8% ↑ 18.4% ↓ 9.1% ↑ 18.1% ↑ 11.9% ↑ 0.8% ↑
5K7FL Office 1 48.7% ↑ 2.4% ↑ 0.3% ↑ 80.1% ↑ 72.1% ↓ 2.3% ↑ 4.4% ↑ 41.2% ↑

Room 2 60.4% ↓ 30.6% ↑ 14.0% ↑ 67.2% ↑ 3.9% ↑ 16.8% ↑ 57.7% ↓ 36.9% ↑

Office 0 75.0% ↓ 16.8% ↑ 8.6% ↑ 61.8% ↑ 7.3% ↑ 87.6% ↑ 15.2% ↑ 48.4% ↑
5K2FL Office 1 25.0% ↓ 0.9% ↑ 0.1% ↑ 14.3% ↓ 52.4% ↓ 3.6% ↑ 0.6% ↑ 3.9% ↑

Room 2 78.9% ↓ 22.5% ↓ 67.0% ↓ 44.4% ↑ 0.1% ↑ 32.2% ↑ 24.7% ↑ 23.5% ↑
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We can see that many of the results either show degradation or are not statistically significant. We
discussed briefly in the main text the quantity of improved and degraded metrics. However, this does not
take into account whether a difference in metric is statistically significant. We present in Table C.2 the
number of significant improvements, the number of significant degradations, and the net total of significant
improvements.

Table C.2: Summary of the effect of different ablations in understanding the effect of different uncertainty-
aware architectures.

Run Architecture Patch-size Features βmin [m] Sig ↑ Sig ↓ Net Sig

2D1K7FS 2D Ray 1 7 1e-3 1 1 0
2D1K2FS 2D Ray 1 2 1e-3 0 5 -5
2D1K7FL 2D Ray 1 7 1e-1 0 0 0
2D1K2FL 2D Ray 1 2 1e-1 3 0 3
2D5K7FS 2D Patch 5 7 1e-3 0 3 -3
2D5K2FS 2D Patch 5 2 1e-3 3 0 3
2D5K7FL 2D Patch 5 7 1e-1 2 0 2
2D5K2FL 2D Patch 5 2 1e-1 2 0 2
3D1K7FS 3D Grid 1 7 1e-3 0 5 -5
3D1K2FS 3D Grid 1 2 1e-3 1 4 -3
3D1K7FL 3D Grid 1 7 1e-1 4 0 4
3D1K2FL 3D Grid 1 2 1e-1 6 0 6
3D5K7FS 3D Grid 5 7 1e-3 1 5 -4
3D5K2FS 3D Grid 5 2 1e-3 0 5 -5
3D5K7FL 3D Grid 5 7 1e-1 4 0 4
3D5K2FL 3D Grid 5 2 1e-1 4 0 4

We see that the selected 3D method, “3D1K2L,” achieves the best performance with six significant im-
proved results and no significant degradations. We also note that all of the methods employing the 3D feature
grid utilizing a small regularizer have net negative improvements. The two methods we decided between for
the 2D image feature MLPs each have three significant improvements and no significant degradations.
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Multi-Sensor Extension Code Modifications

To accommodate the two-sensor input, some major changes were required within the NICE-SLAM code
repository. We detail the major changes here.

D.1 Dataset Loader

The dataset loader is used to ingest images, depth maps, and their ground-truth poses from a sequential
capture of a scene.

Return Types. To accommodate the inclusion of various feature maps and the acquisition of a second
depth map, we alter the return structure from each individual element, to a dictionary of elements. This
provides extensibility for adding additional features or additional synchronized depth maps.

D.2 Mapper

The mapper runs as one of the main processes in NICE-SLAM and is responsible for updating the scene
representation with the provided depth map and image information.

Frustum Feature Selection. When provided with more than one input sensor, the features set for
optimization extends to the furthest depth reading across sensors for a single pixel. This ensures that the
optimizable parameters include the set of feature points in the grid that would theoretically be observed by
any sensor.

Keyframe Selection. We modify the keyframe selection script to accept an averaged depth map between
the two input sensors for determining the relevant keyframes in the “bundle adjustment” mapping process.
A future extension could include using the uncertainty maps to form a weighted depth map for this purpose.

Training Stages. The original NICE-SLAM optimizes each mapping step by progressively adding more
detail. In our implementation of uncertainty-aware single-sensor optimization, we utilize the default loss for
training the middle stage. In our two-sensor implementation, we weight each sensor observation by the
frozen uncertainty head throughout the middle stage. This difference arises from the fact that the single-
sensor environment has fewer observations and we need to initialize the middle grid more consistently with
coarse geometry.
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D.3 Renderer

The renderer class is responsible for rendering selected pixels through the volume rendering pipeline, in-
cluding the forward rendering through the nerual network decoders for occupancy, colour, and uncertainty.

Point Sampling. The original implementation of NICE-SLAM samples 16 points near the depth mea-
surements as well as 32 points a long the ray. With the addition of another sensor, we sample 16 points at
around each sensor measurement on top of the 32 points along the ray for a total of 64 points. The 32 points
sampled equally throughout the ray are determined by the maximum depth of both sensors.
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